Abstract
Most studies of global regulatory proteins are performed in vitro or involve phenotypic comparisons between wild-type and mutant strains. We report the use of strains in which the gene for the leucine-responsive regulatory protein (lrp) is transcribed from isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoters for the purpose of continuously varying the in vivo concentration of Lrp. To obtain a broad range of Lrp concentrations, strains were employed that contained the lrp fusion either in the chromosome (I. C. Blomfield, P. J. Calie, K. J. Eberhardt, M. S. McClain, and B. I. Eisenstein, J. Bacteriol. 175:27-36, 1993) or on a multicopy plasmid. Western blot (immunoblot) analysis with polyclonal antiserum to Lrp confirmed that Lrp levels could be varied more than 70-fold by growing the strains in glucose minimal 3-(N-morpholino)propanesulfonic acid (MOPS) medium containing different amounts of IPTG. Expression of an Lrp-regulated gltB::lacZ operon fusion was measured over this range of Lrp concentrations. beta-Galactosidase activity rose with increasing Lrp levels up to the level of Lrp found in wild-type strains, at which point expression is maximal. The presence of leucine in the medium increased the level of Lrp necessary to achieve half-maximal expression of the gltB::lacZ fusion, as predicted by earlier in vitro studies (B. R. Ernsting, J. W. Denninger, R. M. Blumenthal, and R. G. Matthews, J. Bacteriol. 175:7160-7169, 1993). Interestingly, levels of Lrp greater than those in wild-type cells interfered with activation of gltB::lacZ expression. The growth rate of cultures correlated with the intracellular Lrp concentration: levels of Lrp either lower or higher than wild-type levels resulted in significantly slower growth rates. Thus, the level of Lrp in the cell appears to be optimal for rapid growth in minimal medium, and the gltBDF control region is designed to give maximal expression at this Lrp level.
Full Text
The Full Text of this article is available as a PDF (352.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ball C. A., Osuna R., Ferguson K. C., Johnson R. C. Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J Bacteriol. 1992 Dec;174(24):8043–8056. doi: 10.1128/jb.174.24.8043-8056.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blomfield I. C., Calie P. J., Eberhardt K. J., McClain M. S., Eisenstein B. I. Lrp stimulates phase variation of type 1 fimbriation in Escherichia coli K-12. J Bacteriol. 1993 Jan;175(1):27–36. doi: 10.1128/jb.175.1.27-36.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blumenthal R. M., Borst D. W., Matthews R. G. Experimental analysis of global gene regulation in Escherichia coli. Prog Nucleic Acid Res Mol Biol. 1996;55:1–86. doi: 10.1016/s0079-6603(08)60189-0. [DOI] [PubMed] [Google Scholar]
- Brenchley J. E., Baker C. A., Patil L. G. Regulation of the ammonia assimilatory enzymes in Salmonella typhimurium. J Bacteriol. 1975 Oct;124(1):182–189. doi: 10.1128/jb.124.1.182-189.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calvo J. M., Matthews R. G. The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol Rev. 1994 Sep;58(3):466–490. doi: 10.1128/mr.58.3.466-490.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cui Y., Wang Q., Stormo G. D., Calvo J. M. A consensus sequence for binding of Lrp to DNA. J Bacteriol. 1995 Sep;177(17):4872–4880. doi: 10.1128/jb.177.17.4872-4880.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- D'Ari R., Lin R. T., Newman E. B. The leucine-responsive regulatory protein: more than a regulator? Trends Biochem Sci. 1993 Jul;18(7):260–263. doi: 10.1016/0968-0004(93)90177-o. [DOI] [PubMed] [Google Scholar]
- Ditto M. D., Roberts D., Weisberg R. A. Growth phase variation of integration host factor level in Escherichia coli. J Bacteriol. 1994 Jun;176(12):3738–3748. doi: 10.1128/jb.176.12.3738-3748.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ernsting B. R., Atkinson M. R., Ninfa A. J., Matthews R. G. Characterization of the regulon controlled by the leucine-responsive regulatory protein in Escherichia coli. J Bacteriol. 1992 Feb;174(4):1109–1118. doi: 10.1128/jb.174.4.1109-1118.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ernsting B. R., Denninger J. W., Blumenthal R. M., Matthews R. G. Regulation of the gltBDF operon of Escherichia coli: how is a leucine-insensitive operon regulated by the leucine-responsive regulatory protein? J Bacteriol. 1993 Nov;175(22):7160–7169. doi: 10.1128/jb.175.22.7160-7169.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fraenkel Y. M., Mandel Y., Friedberg D., Margalit H. Identification of common motifs in unaligned DNA sequences: application to Escherichia coli Lrp regulon. Comput Appl Biosci. 1995 Aug;11(4):379–387. doi: 10.1093/bioinformatics/11.4.379. [DOI] [PubMed] [Google Scholar]
- Gollop N., Tavori H., Barak Z. Acetohydroxy acid synthase is a target for leucine containing peptide toxicity in Escherichia coli. J Bacteriol. 1982 Jan;149(1):387–390. doi: 10.1128/jb.149.1.387-390.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haggerty D. M., Oeschger M. P., Schleif R. F. In vivo titration of araC protein. J Bacteriol. 1978 Sep;135(3):775–781. doi: 10.1128/jb.135.3.775-781.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinrikson R. L., Meredith S. C. Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem. 1984 Jan;136(1):65–74. doi: 10.1016/0003-2697(84)90307-5. [DOI] [PubMed] [Google Scholar]
- Huisman T. T., de Graaf F. K. Negative control of fae (K88) expression by the 'global' regulator Lrp is modulated by the 'local' regulator FaeA and affected by DNA methylation. Mol Microbiol. 1995 Jun;16(5):943–953. doi: 10.1111/j.1365-2958.1995.tb02320.x. [DOI] [PubMed] [Google Scholar]
- Jensen P. R., Westerhoff H. V., Michelsen O. The use of lac-type promoters in control analysis. Eur J Biochem. 1993 Jan 15;211(1-2):181–191. doi: 10.1111/j.1432-1033.1993.tb19885.x. [DOI] [PubMed] [Google Scholar]
- Kaltenbach L. S., Braaten B. A., Low D. A. Specific binding of PapI to Lrp-pap DNA complexes. J Bacteriol. 1995 Nov;177(22):6449–6455. doi: 10.1128/jb.177.22.6449-6455.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lange R., Barth M., Hengge-Aronis R. Complex transcriptional control of the sigma s-dependent stationary-phase-induced and osmotically regulated osmY (csi-5) gene suggests novel roles for Lrp, cyclic AMP (cAMP) receptor protein-cAMP complex, and integration host factor in the stationary-phase response of Escherichia coli. J Bacteriol. 1993 Dec;175(24):7910–7917. doi: 10.1128/jb.175.24.7910-7917.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levinthal M., Lejeune P., Danchin A. The H-NS protein modulates the activation of the ilvIH operon of Escherichia coli K12 by Lrp, the leucine regulatory protein. Mol Gen Genet. 1994 Mar;242(6):736–743. doi: 10.1007/BF00283429. [DOI] [PubMed] [Google Scholar]
- Lin R., D'Ari R., Newman E. B. Lambda placMu insertions in genes of the leucine regulon: extension of the regulon to genes not regulated by leucine. J Bacteriol. 1992 Mar;174(6):1948–1955. doi: 10.1128/jb.174.6.1948-1955.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Metcalf W. W., Steed P. M., Wanner B. L. Identification of phosphate starvation-inducible genes in Escherichia coli K-12 by DNA sequence analysis of psi::lacZ(Mu d1) transcriptional fusions. J Bacteriol. 1990 Jun;172(6):3191–3200. doi: 10.1128/jb.172.6.3191-3200.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newman E. B., Lin R. Leucine-responsive regulatory protein: a global regulator of gene expression in E. coli. Annu Rev Microbiol. 1995;49:747–775. doi: 10.1146/annurev.mi.49.100195.003531. [DOI] [PubMed] [Google Scholar]
- Nou X., Skinner B., Braaten B., Blyn L., Hirsch D., Low D. Regulation of pyelonephritis-associated pili phase-variation in Escherichia coli: binding of the PapI and the Lrp regulatory proteins is controlled by DNA methylation. Mol Microbiol. 1993 Feb;7(4):545–553. doi: 10.1111/j.1365-2958.1993.tb01145.x. [DOI] [PubMed] [Google Scholar]
- Nyström T., Neidhardt F. C. Effects of overproducing the universal stress protein, UspA, in Escherichia coli K-12. J Bacteriol. 1996 Feb;178(3):927–930. doi: 10.1128/jb.178.3.927-930.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oshima T., Ito K., Kabayama H., Nakamura Y. Regulation of lrp gene expression by H-NS and Lrp proteins in Escherichia coli: dominant negative mutations in lrp. Mol Gen Genet. 1995 Jun 10;247(5):521–528. doi: 10.1007/BF00290342. [DOI] [PubMed] [Google Scholar]
- Platko J. V., Willins D. A., Calvo J. M. The ilvIH operon of Escherichia coli is positively regulated. J Bacteriol. 1990 Aug;172(8):4563–4570. doi: 10.1128/jb.172.8.4563-4570.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quay S. C., Dick T. E., Oxender D. L. Role of transport systems in amino acid metabolism: leucine toxicity and the branched-chain amino acid transport systems. J Bacteriol. 1977 Mar;129(3):1257–1265. doi: 10.1128/jb.129.3.1257-1265.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruyter G. J., Postma P. W., van Dam K. Control of glucose metabolism by enzyme IIGlc of the phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli. J Bacteriol. 1991 Oct;173(19):6184–6191. doi: 10.1128/jb.173.19.6184-6191.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmid M. B. More than just "histone-like" proteins. Cell. 1990 Nov 2;63(3):451–453. doi: 10.1016/0092-8674(90)90438-k. [DOI] [PubMed] [Google Scholar]
- Stauffer L. T., Stauffer G. V. Characterization of the gcv control region from Escherichia coli. J Bacteriol. 1994 Oct;176(20):6159–6164. doi: 10.1128/jb.176.20.6159-6164.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutton A., Freundlich M. Regulation of cyclic AMP of the ilvB-encoded biosynthetic acetohydroxy acid synthase in Escherichia coli K-12. Mol Gen Genet. 1980 Apr;178(1):179–183. doi: 10.1007/BF00267227. [DOI] [PubMed] [Google Scholar]
- Tchetina E., Newman E. B. Identification of Lrp-regulated genes by inverse PCR and sequencing: regulation of two mal operons of Escherichia coli by leucine-responsive regulatory protein. J Bacteriol. 1995 May;177(10):2679–2683. doi: 10.1128/jb.177.10.2679-2683.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tuan L. R., D'Ari R., Newman E. B. The leucine regulon of Escherichia coli K-12: a mutation in rblA alters expression of L-leucine-dependent metabolic operons. J Bacteriol. 1990 Aug;172(8):4529–4535. doi: 10.1128/jb.172.8.4529-4535.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh K., Koshland D. E., Jr Characterization of rate-controlling steps in vivo by use of an adjustable expression vector. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3577–3581. doi: 10.1073/pnas.82.11.3577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Q., Wu J., Friedberg D., Plakto J., Calvo J. M. Regulation of the Escherichia coli lrp gene. J Bacteriol. 1994 Apr;176(7):1831–1839. doi: 10.1128/jb.176.7.1831-1839.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wanner B. L., Kodaira R., Neidhardt F. C. Physiological regulation of a decontrolled lac operon. J Bacteriol. 1977 Apr;130(1):212–222. doi: 10.1128/jb.130.1.212-222.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willins D. A., Ryan C. W., Platko J. V., Calvo J. M. Characterization of Lrp, and Escherichia coli regulatory protein that mediates a global response to leucine. J Biol Chem. 1991 Jun 15;266(17):10768–10774. [PubMed] [Google Scholar]