Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Dec;178(23):6945–6951. doi: 10.1128/jb.178.23.6945-6951.1996

Upstream interactions at the lambda pRM promoter are sequence nonspecific and activate the promoter to a lesser extent than an introduced UP element of an rRNA promoter.

Y Tang 1, K Murakami 1, A Ishihama 1, P L deHaseth 1
PMCID: PMC178597  PMID: 8955318

Abstract

The rightward regulatory region of bacteriophage lambda contains two promoters, pRM and pR, which direct the synthesis of nonoverlapping divergent transcripts from start sites 82 bp apart. Each of the two promoters has an upstream (A+T)-rich region (ATR) within the sequence from -40 to -60 where in the rrnB P1 promoter a stretch of 20 (A+T) bp greatly stimulates promoter function. Here we present an investigation of the possible functional significance of pRM's ATR. We determined the effects on RNA polymerase-pRM promoter interaction both of (G+C) substitutions in the ATR and of amino acid substitutions in the alpha subunit, known to affect the upstream interaction. We find small (two- to threefold) effects of selected mutations in the alpha subunit on open complex formation at pRM. However, the (presumably upstream) interactions underlying these effects are sequence nonspecific, as they are not affected by (G+C) substitutions in the ATR. Substitution of the 20-bp UP element of the rrnB P1 promoter between positions -40 and -60 at pRM stimulates open complex formation to a considerably greater extent (5- to 10-fold). Results from kinetic studies indicate that on this construct the UP element mainly accelerates a step subsequent to the binding of RNA polymerase, although it may also facilitate the binding event itself. Less extensive studies likewise provide evidence for a two- to threefold activation of pR by upstream interactions. The possible involvement of the alpha subunit in the previously characterized (e.g., B. C. Mita, Y. Tang, and P. L. deHaseth, J. Biol. Chem. 270:30428-30433, 1995) interference of pR-bound RNA polymerase with open complex formation at pRM is discussed.

Full Text

The Full Text of this article is available as a PDF (263.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auble D. T., Allen T. L., deHaseth P. L. Promoter recognition by Escherichia coli RNA polymerase. Effects of substitutions in the spacer DNA separating the -10 and -35 regions. J Biol Chem. 1986 Aug 25;261(24):11202–11206. [PubMed] [Google Scholar]
  2. Banner C. D., Moran C. P., Jr, Losick R. Deletion analysis of a complex promoter for a developmentally regulated gene from Bacillus subtilis. J Mol Biol. 1983 Aug 5;168(2):351–365. doi: 10.1016/s0022-2836(83)80023-0. [DOI] [PubMed] [Google Scholar]
  3. Blatter E. E., Ross W., Tang H., Gourse R. L., Ebright R. H. Domain organization of RNA polymerase alpha subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding. Cell. 1994 Sep 9;78(5):889–896. doi: 10.1016/s0092-8674(94)90682-3. [DOI] [PubMed] [Google Scholar]
  4. Burgess R. R., Jendrisak J. J. A procedure for the rapid, large-scall purification of Escherichia coli DNA-dependent RNA polymerase involving Polymin P precipitation and DNA-cellulose chromatography. Biochemistry. 1975 Oct 21;14(21):4634–4638. doi: 10.1021/bi00692a011. [DOI] [PubMed] [Google Scholar]
  5. Craig M. L., Suh W. C., Record M. T., Jr HO. and DNase I probing of E sigma 70 RNA polymerase--lambda PR promoter open complexes: Mg2+ binding and its structural consequences at the transcription start site. Biochemistry. 1995 Dec 5;34(48):15624–15632. doi: 10.1021/bi00048a004. [DOI] [PubMed] [Google Scholar]
  6. Fong R. S., Woody S., Gussin G. N. Direct and indirect effects of mutations in lambda PRM on open complex formation at the divergent PR promoter. J Mol Biol. 1994 Jul 8;240(2):119–126. doi: 10.1006/jmbi.1994.1426. [DOI] [PubMed] [Google Scholar]
  7. Fong R. S., Woody S., Gussin G. N. Modulation of P(RM) activity by the lambda PR promoter in both the presence and absence of repressor. J Mol Biol. 1993 Aug 5;232(3):792–804. doi: 10.1006/jmbi.1993.1432. [DOI] [PubMed] [Google Scholar]
  8. Gaal T., Ross W., Blatter E. E., Tang H., Jia X., Krishnan V. V., Assa-Munt N., Ebright R. H., Gourse R. L. DNA-binding determinants of the alpha subunit of RNA polymerase: novel DNA-binding domain architecture. Genes Dev. 1996 Jan 1;10(1):16–26. doi: 10.1101/gad.10.1.16. [DOI] [PubMed] [Google Scholar]
  9. Giladi H., Murakami K., Ishihama A., Oppenheim A. B. Identification of an UP element within the IHF binding site at the PL1-PL2 tandem promoter of bacteriophage lambda. J Mol Biol. 1996 Jul 26;260(4):484–491. doi: 10.1006/jmbi.1996.0416. [DOI] [PubMed] [Google Scholar]
  10. Gonzalez N., Wiggs J., Chamberlin M. J. A simple procedure for resolution of Escherichia coli RNA polymerase holoenzyme from core polymerase. Arch Biochem Biophys. 1977 Aug;182(2):404–408. doi: 10.1016/0003-9861(77)90521-5. [DOI] [PubMed] [Google Scholar]
  11. Hawley D. K., McClure W. R. Mechanism of activation of transcription initiation from the lambda PRM promoter. J Mol Biol. 1982 May 25;157(3):493–525. doi: 10.1016/0022-2836(82)90473-9. [DOI] [PubMed] [Google Scholar]
  12. Helmann J. D. Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res. 1995 Jul 11;23(13):2351–2360. doi: 10.1093/nar/23.13.2351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hershberger P. A., Mita B. C., Tripatara A., deHaseth P. L. Interference by PR-bound RNA polymerase with PRM function in vitro. Modulation by the bacteriophage lambda cI protein. J Biol Chem. 1993 Apr 25;268(12):8943–8948. [PubMed] [Google Scholar]
  14. Hershberger P. A., deHaseth P. L. RNA polymerase bound to the PR promoter of bacteriophage lambda inhibits open complex formation at the divergently transcribed PRM promoter. Implications for an indirect mechanism of transcriptional activation by lambda repressor. J Mol Biol. 1991 Dec 5;222(3):479–494. doi: 10.1016/0022-2836(91)90491-n. [DOI] [PubMed] [Google Scholar]
  15. Igarashi K., Ishihama A. Bipartite functional map of the E. coli RNA polymerase alpha subunit: involvement of the C-terminal region in transcription activation by cAMP-CRP. Cell. 1991 Jun 14;65(6):1015–1022. doi: 10.1016/0092-8674(91)90553-b. [DOI] [PubMed] [Google Scholar]
  16. Jafri S., Urbanowski M. L., Stauffer G. V. A mutation in the rpoA gene encoding the alpha subunit of RNA polymerase that affects metE-metR transcription in Escherichia coli. J Bacteriol. 1995 Feb;177(3):524–529. doi: 10.1128/jb.177.3.524-529.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Landini P., Volkert M. R. RNA polymerase alpha subunit binding site in positively controlled promoters: a new model for RNA polymerase-promoter interaction and transcriptional activation in the Escherichia coli ada and aidB genes. EMBO J. 1995 Sep 1;14(17):4329–4335. doi: 10.1002/j.1460-2075.1995.tb00107.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lawley B., Fujita N., Ishihama A., Pittard A. J. The TyrR protein of Escherichia coli is a class I transcription activator. J Bacteriol. 1995 Jan;177(1):238–241. doi: 10.1128/jb.177.1.238-241.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McClure W. R. Mechanism and control of transcription initiation in prokaryotes. Annu Rev Biochem. 1985;54:171–204. doi: 10.1146/annurev.bi.54.070185.001131. [DOI] [PubMed] [Google Scholar]
  20. McClure W. R. Rate-limiting steps in RNA chain initiation. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5634–5638. doi: 10.1073/pnas.77.10.5634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mita B. C., Tang Y., deHaseth P. L. Interference of PR-bound RNA polymerase with open complex formation at PRM is relieved by a 10-base pair deletion between the two promoters. J Biol Chem. 1995 Dec 22;270(51):30428–30433. doi: 10.1074/jbc.270.51.30428. [DOI] [PubMed] [Google Scholar]
  22. Negishi T., Fujita N., Ishihama A. Structural map of the alpha subunit of Escherichia coli RNA polymerase: structural domains identified by proteolytic cleavage. J Mol Biol. 1995 May 12;248(4):723–728. doi: 10.1006/jmbi.1995.0254. [DOI] [PubMed] [Google Scholar]
  23. Prosen D. E., Cech C. L. Bacteriophage T7 E promoter: identification and measurement of kinetics of association with Escherichia coli RNA polymerase. Biochemistry. 1985 Apr 23;24(9):2219–2227. doi: 10.1021/bi00330a016. [DOI] [PubMed] [Google Scholar]
  24. Ptashne M., Jeffrey A., Johnson A. D., Maurer R., Meyer B. J., Pabo C. O., Roberts T. M., Sauer R. T. How the lambda repressor and cro work. Cell. 1980 Jan;19(1):1–11. doi: 10.1016/0092-8674(80)90383-9. [DOI] [PubMed] [Google Scholar]
  25. Rao L., Ross W., Appleman J. A., Gaal T., Leirmo S., Schlax P. J., Record M. T., Jr, Gourse R. L. Factor independent activation of rrnB P1. An "extended" promoter with an upstream element that dramatically increases promoter strength. J Mol Biol. 1994 Feb 4;235(5):1421–1435. doi: 10.1006/jmbi.1994.1098. [DOI] [PubMed] [Google Scholar]
  26. Ross W., Gosink K. K., Salomon J., Igarashi K., Zou C., Ishihama A., Severinov K., Gourse R. L. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science. 1993 Nov 26;262(5138):1407–1413. doi: 10.1126/science.8248780. [DOI] [PubMed] [Google Scholar]
  27. Woody S. T., Fong R. S., Gussin G. N. Effects of a single base-pair deletion in the bacteriophage lambda PRM promoter. Repression of PRM by repressor bound at OR2 and by RNA polymerase bound at PR. J Mol Biol. 1993 Jan 5;229(1):37–51. doi: 10.1006/jmbi.1993.1006. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES