Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Dec;178(23):6983–6990. doi: 10.1128/jb.178.23.6983-6990.1996

Transcriptional organization and regulation of the dnaK and groE operons of Chlamydia trachomatis.

M Tan 1, B Wong 1, J N Engel 1
PMCID: PMC178602  PMID: 8955323

Abstract

The transcriptional organization and regulation of the dnaK and groE heat shock operons of Chlamydia trachomatis were studied and found to resemble those of the cognate operons of Bacillus subtilis and Clostridium acetobutylicum. The gene order is conserved (hrcA-grpE-dnaK), but no dnaJ homolog could be identified in this region. The dnaK operon was transcribed as a low-abundance polycistronic mRNA whose levels did not increase upon exposure to heat shock. In contrast, a more abundant 2.3-kb mRNA encoding only the dnaK sequence was detectable, and its steady-state level increased upon heat shock. The transcription initiation sites of the dnaK and groE operons were found to be preceded by sequences that resemble an Escherichia coli sigma70 consensus promoter. Upstream of each putative promoter is an inverted repeat sequence which resembles a similar element (CIRCE [controlling inverted repeat of chaperone expression]) found upstream of the dnaK and groE operons in at least 27 eubacterial species. In vitro transcription studies utilizing partially purified C. trachomatis RNA polymerase demonstrated that the regions containing the putative promoter elements of the dnaK and groE operons are functional, although heat shock-regulated expression could not be demonstrated.

Full Text

The Full Text of this article is available as a PDF (487.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beatty W. L., Byrne G. I., Morrison R. P. Repeated and persistent infection with Chlamydia and the development of chronic inflammation and disease. Trends Microbiol. 1994 Mar;2(3):94–98. doi: 10.1016/0966-842x(94)90542-8. [DOI] [PubMed] [Google Scholar]
  2. Bukau B. Regulation of the Escherichia coli heat-shock response. Mol Microbiol. 1993 Aug;9(4):671–680. doi: 10.1111/j.1365-2958.1993.tb01727.x. [DOI] [PubMed] [Google Scholar]
  3. Cerrone M. C., Ma J. J., Stephens R. S. Cloning and sequence of the gene for heat shock protein 60 from Chlamydia trachomatis and immunological reactivity of the protein. Infect Immun. 1991 Jan;59(1):79–90. doi: 10.1128/iai.59.1.79-90.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Danilition S. L., Maclean I. W., Peeling R., Winston S., Brunham R. C. The 75-kilodalton protein of Chlamydia trachomatis: a member of the heat shock protein 70 family? Infect Immun. 1990 Jan;58(1):189–196. doi: 10.1128/iai.58.1.189-196.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Engel J. N., Ganem D. Chlamydial rRNA operons: gene organization and identification of putative tandem promoters. J Bacteriol. 1987 Dec;169(12):5678–5685. doi: 10.1128/jb.169.12.5678-5685.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Engel J. N., Pollack J., Perara E., Ganem D. Heat shock response of murine Chlamydia trachomatis. J Bacteriol. 1990 Dec;172(12):6959–6972. doi: 10.1128/jb.172.12.6959-6972.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hecker M., Schumann W., Völker U. Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol. 1996 Feb;19(3):417–428. doi: 10.1046/j.1365-2958.1996.396932.x. [DOI] [PubMed] [Google Scholar]
  8. Kikuta L. C., Puolakkainen M., Kuo C. C., Campbell L. A. Isolation and sequence analysis of the Chlamydia pneumoniae GroE operon. Infect Immun. 1991 Dec;59(12):4665–4669. doi: 10.1128/iai.59.12.4665-4669.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lindquist S. The heat-shock response. Annu Rev Biochem. 1986;55:1151–1191. doi: 10.1146/annurev.bi.55.070186.005443. [DOI] [PubMed] [Google Scholar]
  10. Morrison R. P., Belland R. J., Lyng K., Caldwell H. D. Chlamydial disease pathogenesis. The 57-kD chlamydial hypersensitivity antigen is a stress response protein. J Exp Med. 1989 Oct 1;170(4):1271–1283. doi: 10.1084/jem.170.4.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Narberhaus F., Bahl H. Cloning, sequencing, and molecular analysis of the groESL operon of Clostridium acetobutylicum. J Bacteriol. 1992 May;174(10):3282–3289. doi: 10.1128/jb.174.10.3282-3289.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Narberhaus F., Giebeler K., Bahl H. Molecular characterization of the dnaK gene region of Clostridium acetobutylicum, including grpE, dnaJ, and a new heat shock gene. J Bacteriol. 1992 May;174(10):3290–3299. doi: 10.1128/jb.174.10.3290-3299.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ohta T., Honda K., Kuroda M., Saito K., Hayashi H. Molecular characterization of the gene operon of heat shock proteins HSP60 and HSP10 in methicillin-resistant Staphylococcus aureus. Biochem Biophys Res Commun. 1993 Jun 15;193(2):730–737. doi: 10.1006/bbrc.1993.1686. [DOI] [PubMed] [Google Scholar]
  14. Ohta T., Saito K., Kuroda M., Honda K., Hirata H., Hayashi H. Molecular cloning of two new heat shock genes related to the hsp70 genes in Staphylococcus aureus. J Bacteriol. 1994 Aug;176(15):4779–4783. doi: 10.1128/jb.176.15.4779-4783.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schachter J. The intracellular life of Chlamydia. Curr Top Microbiol Immunol. 1988;138:109–139. [PubMed] [Google Scholar]
  18. Schmidt A., Schiesswohl M., Völker U., Hecker M., Schumann W. Cloning, sequencing, mapping, and transcriptional analysis of the groESL operon from Bacillus subtilis. J Bacteriol. 1992 Jun;174(12):3993–3999. doi: 10.1128/jb.174.12.3993-3999.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schmiel D. H., Wyrick P. B. Another putative heat-shock gene and aminoacyl-tRNA synthetase gene are located upstream from the grpE-like and dnaK-like genes in Chlamydia trachomatis. Gene. 1994 Jul 22;145(1):57–63. doi: 10.1016/0378-1119(94)90322-0. [DOI] [PubMed] [Google Scholar]
  20. Schulz A., Schumann W. hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J Bacteriol. 1996 Feb;178(4):1088–1093. doi: 10.1128/jb.178.4.1088-1093.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schulz A., Tzschaschel B., Schumann W. Isolation and analysis of mutants of the dnaK operon of Bacillus subtilis. Mol Microbiol. 1995 Feb;15(3):421–429. doi: 10.1111/j.1365-2958.1995.tb02256.x. [DOI] [PubMed] [Google Scholar]
  22. Tan M., Engel J. N. Identification of sequences necessary for transcription in vitro from the Chlamydia trachomatis rRNA P1 promoter. J Bacteriol. 1996 Dec;178(23):6975–6982. doi: 10.1128/jb.178.23.6975-6982.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tan M., Klein R., Grant R., Ganem D., Engel J. Cloning and characterization of the RNA polymerase alpha-subunit operon of Chlamydia trachomatis. J Bacteriol. 1993 Nov;175(22):7150–7159. doi: 10.1128/jb.175.22.7150-7159.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Völker U., Engelmann S., Maul B., Riethdorf S., Völker A., Schmid R., Mach H., Hecker M. Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology. 1994 Apr;140(Pt 4):741–752. doi: 10.1099/00221287-140-4-741. [DOI] [PubMed] [Google Scholar]
  25. Webb R., Reddy K. J., Sherman L. A. Regulation and sequence of the Synechococcus sp. strain PCC 7942 groESL operon, encoding a cyanobacterial chaperonin. J Bacteriol. 1990 Sep;172(9):5079–5088. doi: 10.1128/jb.172.9.5079-5088.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wetzstein M., Völker U., Dedio J., Löbau S., Zuber U., Schiesswohl M., Herget C., Hecker M., Schumann W. Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis. J Bacteriol. 1992 May;174(10):3300–3310. doi: 10.1128/jb.174.10.3300-3310.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yuan G., Wong S. L. Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK. J Bacteriol. 1995 Nov;177(22):6462–6468. doi: 10.1128/jb.177.22.6462-6468.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yuan G., Wong S. L. Regulation of groE expression in Bacillus subtilis: the involvement of the sigma A-like promoter and the roles of the inverted repeat sequence (CIRCE). J Bacteriol. 1995 Oct;177(19):5427–5433. doi: 10.1128/jb.177.19.5427-5433.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yura T., Nagai H., Mori H. Regulation of the heat-shock response in bacteria. Annu Rev Microbiol. 1993;47:321–350. doi: 10.1146/annurev.mi.47.100193.001541. [DOI] [PubMed] [Google Scholar]
  30. Zuber U., Schumann W. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol. 1994 Mar;176(5):1359–1363. doi: 10.1128/jb.176.5.1359-1363.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. van Asseldonk M., Simons A., Visser H., de Vos W. M., Simons G. Cloning, nucleotide sequence, and regulatory analysis of the Lactococcus lactis dnaJ gene. J Bacteriol. 1993 Mar;175(6):1637–1644. doi: 10.1128/jb.175.6.1637-1644.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES