Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Dec;178(24):7025–7030. doi: 10.1128/jb.178.24.7025-7030.1996

The linker region of AraC protein.

R J Eustance 1, R F Schleif 1
PMCID: PMC178611  PMID: 8955380

Abstract

AraC protein, a transcriptional regulator of the L-arabinose operon in Escherichia coli, is dimeric. Each monomer consists of a domain for DNA binding plus transcription activation and a domain for dimerization plus arabinose binding. These are connected to one another by a linker region of at least 5 amino acids. Here we have addressed the question of whether any of the amino acids in the linker region play active, specific, and crucial structural roles or whether these amino acids merely serve as passive spacers between the functional domains. We found that all but one of the linker amino acids can be changed to other amino acids individually and in small groups without substantially affecting the ability of AraC protein to activate transcription when arabinose is present. When, however, the entire linker region is replaced with linker sequences from other proteins, the functioning of AraC is impaired.

Full Text

The Full Text of this article is available as a PDF (798.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argos P. An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J Mol Biol. 1990 Feb 20;211(4):943–958. doi: 10.1016/0022-2836(90)90085-Z. [DOI] [PubMed] [Google Scholar]
  2. Astromoff A., Ptashne M. A variant of lambda repressor with an altered pattern of cooperative binding to DNA sites. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8110–8114. doi: 10.1073/pnas.92.18.8110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brunelle A., Schleif R. Determining residue-base interactions between AraC protein and araI DNA. J Mol Biol. 1989 Oct 20;209(4):607–622. doi: 10.1016/0022-2836(89)90598-6. [DOI] [PubMed] [Google Scholar]
  4. Bustos S. A., Schleif R. F. Functional domains of the AraC protein. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5638–5642. doi: 10.1073/pnas.90.12.5638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carra J. H., Schleif R. F. Variation of half-site organization and DNA looping by AraC protein. EMBO J. 1993 Jan;12(1):35–44. doi: 10.1002/j.1460-2075.1993.tb05629.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dunn T. M., Hahn S., Ogden S., Schleif R. F. An operator at -280 base pairs that is required for repression of araBAD operon promoter: addition of DNA helical turns between the operator and promoter cyclically hinders repression. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5017–5020. doi: 10.1073/pnas.81.16.5017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Englesberg E., Irr J., Power J., Lee N. Positive control of enzyme synthesis by gene C in the L-arabinose system. J Bacteriol. 1965 Oct;90(4):946–957. doi: 10.1128/jb.90.4.946-957.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Englesberg E., Squires C., Meronk F., Jr The L-arabinose operon in Escherichia coli B-r: a genetic demonstration of two functional states of the product of a regulator gene. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1100–1107. doi: 10.1073/pnas.62.4.1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eustance R. J., Bustos S. A., Schleif R. F. Reaching out. Locating and lengthening the interdomain linker in AraC protein. J Mol Biol. 1994 Sep 30;242(4):330–338. doi: 10.1006/jmbi.1994.1584. [DOI] [PubMed] [Google Scholar]
  10. Gubler M., Bickle T. A. Increased protein flexibility leads to promiscuous protein--DNA interactions in type IC restriction-modification systems. EMBO J. 1991 Apr;10(4):951–957. doi: 10.1002/j.1460-2075.1991.tb08029.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hendrickson W., Stoner C., Schleif R. Characterization of the Escherichia coli araFGH and araJ promoters. J Mol Biol. 1990 Oct 20;215(4):497–510. doi: 10.1016/S0022-2836(05)80163-9. [DOI] [PubMed] [Google Scholar]
  12. Horii T., Ogawa T., Nakatani T., Hase T., Matsubara H., Ogawa H. Regulation of SOS functions: purification of E. coli LexA protein and determination of its specific site cleaved by the RecA protein. Cell. 1981 Dec;27(3 Pt 2):515–522. doi: 10.1016/0092-8674(81)90393-7. [DOI] [PubMed] [Google Scholar]
  13. Kraft R., Tardiff J., Krauter K. S., Leinwand L. A. Using mini-prep plasmid DNA for sequencing double stranded templates with Sequenase. Biotechniques. 1988 Jun;6(6):544-6, 549. [PubMed] [Google Scholar]
  14. Lobell R. B., Schleif R. F. DNA looping and unlooping by AraC protein. Science. 1990 Oct 26;250(4980):528–532. doi: 10.1126/science.2237403. [DOI] [PubMed] [Google Scholar]
  15. Martin K., Huo L., Schleif R. F. The DNA loop model for ara repression: AraC protein occupies the proposed loop sites in vivo and repression-negative mutations lie in these same sites. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3654–3658. doi: 10.1073/pnas.83.11.3654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moult J., Sussman F., James M. N. Electron density calculations as an extension of protein structure refinement. Streptomyces griseus protease A at 1.5 A resolution. J Mol Biol. 1985 Apr 20;182(4):555–566. doi: 10.1016/0022-2836(85)90241-4. [DOI] [PubMed] [Google Scholar]
  17. Oertel-Buchheit P., Schmidt-Dörr T., Granger-Schnarr M., Schnarr M. Spacing requirements between LexA operator half-sites can be relaxed by fusing the LexA DNA binding domain with some alternative dimerization domains. J Mol Biol. 1993 Jan 5;229(1):1–7. doi: 10.1006/jmbi.1993.1001. [DOI] [PubMed] [Google Scholar]
  18. Reece R. J., Ptashne M. Determinants of binding-site specificity among yeast C6 zinc cluster proteins. Science. 1993 Aug 13;261(5123):909–911. doi: 10.1126/science.8346441. [DOI] [PubMed] [Google Scholar]
  19. Reeder T., Schleif R. AraC protein can activate transcription from only one position and when pointed in only one direction. J Mol Biol. 1993 May 20;231(2):205–218. doi: 10.1006/jmbi.1993.1276. [DOI] [PubMed] [Google Scholar]
  20. Sander C., Schneider R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins. 1991;9(1):56–68. doi: 10.1002/prot.340090107. [DOI] [PubMed] [Google Scholar]
  21. Sauer R. T., Ross M. J., Ptashne M. Cleavage of the lambda and P22 repressors by recA protein. J Biol Chem. 1982 Apr 25;257(8):4458–4462. [PubMed] [Google Scholar]
  22. Stemmer W. P., Morris S. K. Enzymatic inverse PCR: a restriction site independent, single-fragment method for high-efficiency, site-directed mutagenesis. Biotechniques. 1992 Aug;13(2):214–220. [PubMed] [Google Scholar]
  23. Stoner C., Schleif R. The araE low affinity L-arabinose transport promoter. Cloning, sequence, transcription start site and DNA binding sites of regulatory proteins. J Mol Biol. 1983 Dec 25;171(4):369–381. doi: 10.1016/0022-2836(83)90035-9. [DOI] [PubMed] [Google Scholar]
  24. Tobin J. F., Schleif R. F. Positive regulation of the Escherichia coli L-rhamnose operon is mediated by the products of tandemly repeated regulatory genes. J Mol Biol. 1987 Aug 20;196(4):789–799. doi: 10.1016/0022-2836(87)90405-0. [DOI] [PubMed] [Google Scholar]
  25. Vershon A. K., Johnson A. D. A short, disordered protein region mediates interactions between the homeodomain of the yeast alpha 2 protein and the MCM1 protein. Cell. 1993 Jan 15;72(1):105–112. doi: 10.1016/0092-8674(93)90054-t. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES