Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Dec;178(24):7099–7105. doi: 10.1128/jb.178.24.7099-7105.1996

Utilization of orotate as a pyrimidine source by Salmonella typhimurium and Escherichia coli requires the dicarboxylate transport protein encoded by dctA.

K E Baker 1, K P Ditullio 1, J Neuhard 1, R A Kelln 1
PMCID: PMC178620  PMID: 8955389

Abstract

Mutants deficient in orotate utilization (initially termed out mutants) were isolated by selection for resistance to 5-fluoroorotate (FOA), and the mutations of 12 independently obtained isolates were found to map at 79 to 80 min on the Salmonella typhimurium chromosome. A gene complementing the mutations was cloned and sequenced and found to possess extensive sequence identity to characterized genes for C4-dicarboxylate transport (dctA) in Rhizobium species and to the sequence inferred to be the dctA gene of Escherichia coli. The mutants were unable to utilize succinate, malate, or fumarate as sole carbon source, an expected phenotype of dctA mutants, and introduction of the cloned DNA resulted in restoration of both C4-dicarboxylate and orotate utilization. Further, succinate was found to compete with orotate for entry into the cell. The S. typhimurium dctA gene encodes a highly hydrophobic polypeptide of 45.4 kDa, and the polypeptide was found to be enriched in the membrane fraction of minicells harboring a dctA+ plasmid. The DNA immediately upstream of the deduced -35 region contains a putative cyclic AMP-cyclic AMP receptor protein complex binding site, thus affording an explanation for the more effective utilization of orotate with glycerol than with glucose as carbon source. The E. coli dctA gene was cloned from a lambda vector and shown to complement C4-dicarboxylate and orotate utilization in FOA-resistant mutants of both E. coli and S. typhimurium. The accumulated results demonstrate that the dctA gene product, in addition to transporting C4-dicarboxylates, mediates the transport of orotate, a cyclic monocarboxylate.

Full Text

The Full Text of this article is available as a PDF (458.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balbás P., Soberón X., Merino E., Zurita M., Lomeli H., Valle F., Flores N., Bolivar F. Plasmid vector pBR322 and its special-purpose derivatives--a review. Gene. 1986;50(1-3):3–40. doi: 10.1016/0378-1119(86)90307-0. [DOI] [PubMed] [Google Scholar]
  2. Claros M. G., von Heijne G. TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci. 1994 Dec;10(6):685–686. doi: 10.1093/bioinformatics/10.6.685. [DOI] [PubMed] [Google Scholar]
  3. Csonka L. N., Howe M. M., Ingraham J. L., Pierson L. S., 3rd, Turnbough C. L., Jr Infection of Salmonella typhimurium with coliphage Mu d1 (Apr lac): construction of pyr::lac gene fusions. J Bacteriol. 1981 Jan;145(1):299–305. doi: 10.1128/jb.145.1.299-305.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Danielsen S., Kilstrup M., Barilla K., Jochimsen B., Neuhard J. Characterization of the Escherichia coli codBA operon encoding cytosine permease and cytosine deaminase. Mol Microbiol. 1992 May;6(10):1335–1344. doi: 10.1111/j.1365-2958.1992.tb00854.x. [DOI] [PubMed] [Google Scholar]
  5. Dennis P. P., Herman R. K. Pyrimidine pools and macromolecular composition of pyrimidine-limited Escherichia coli. J Bacteriol. 1970 Apr;102(1):118–123. doi: 10.1128/jb.102.1.118-123.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Enquist L., Sternberg N. In vitro packaging of lambda Dam vectors and their use in cloning DNA fragments. Methods Enzymol. 1979;68:281–298. doi: 10.1016/0076-6879(79)68020-5. [DOI] [PubMed] [Google Scholar]
  7. Frick M. M., Neuhard J., Kelln R. A. Cloning, nucleotide sequence and regulation of the Salmonella typhimurium pyrD gene encoding dihydroorotate dehydrogenase. Eur J Biochem. 1990 Dec 12;194(2):573–578. doi: 10.1111/j.1432-1033.1990.tb15654.x. [DOI] [PubMed] [Google Scholar]
  8. Harley C. B., Reynolds R. P. Analysis of E. coli promoter sequences. Nucleic Acids Res. 1987 Mar 11;15(5):2343–2361. doi: 10.1093/nar/15.5.2343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hmiel S. P., Snavely M. D., Miller C. G., Maguire M. E. Magnesium transport in Salmonella typhimurium: characterization of magnesium influx and cloning of a transport gene. J Bacteriol. 1986 Dec;168(3):1444–1450. doi: 10.1128/jb.168.3.1444-1450.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hughes K. T., Roth J. R. Conditionally transposition-defective derivative of Mu d1(Amp Lac). J Bacteriol. 1984 Jul;159(1):130–137. doi: 10.1128/jb.159.1.130-137.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jensen K. F., Larsen J. N., Schack L., Sivertsen A. Studies on the structure and expression of Escherichia coli pyrC, pyrD, and pyrF using the cloned genes. Eur J Biochem. 1984 Apr 16;140(2):343–352. doi: 10.1111/j.1432-1033.1984.tb08107.x. [DOI] [PubMed] [Google Scholar]
  12. Kay W. W., Cameron M. J. Transport of C4-dicarboxylic acids in salmonella typhimurium. Arch Biochem Biophys. 1978 Sep;190(1):281–289. doi: 10.1016/0003-9861(78)90277-1. [DOI] [PubMed] [Google Scholar]
  13. Kay W. W., Kornberg H. L. Genetic control of the uptake of C(4)-dicarboxylic acids by Escherichia coli. FEBS Lett. 1969 Apr;3(2):93–96. doi: 10.1016/0014-5793(69)80105-5. [DOI] [PubMed] [Google Scholar]
  14. Kay W. W., Kornberg H. L. The uptake of C4-dicarboxylic acids by Escherichia coli. Eur J Biochem. 1971 Jan;18(2):274–281. doi: 10.1111/j.1432-1033.1971.tb01240.x. [DOI] [PubMed] [Google Scholar]
  15. Kelln R. A. Evidence for involvement of pyrH+ of an Escherichia coli K-12 F-prime factor in inhibiting construction of hybrid merodiploids with Salmonella typhimurium. Can J Microbiol. 1984 Aug;30(8):991–996. doi: 10.1139/m84-154. [DOI] [PubMed] [Google Scholar]
  16. Kelln R. A., Lintott L. G. Construction of plasmid-free derivatives of Salmonella typhimurium LT2 using temperature-sensitive mutants of pKZ1 for displacement of the resident plasmid, pSLT. Mol Gen Genet. 1990 Jul;222(2-3):438–440. doi: 10.1007/BF00633852. [DOI] [PubMed] [Google Scholar]
  17. Kelln R. A., Neuhard J. Regulation of pyrC expression in Salmonella typhimurium: identification of a regulatory region. Mol Gen Genet. 1988 May;212(2):287–294. doi: 10.1007/BF00334698. [DOI] [PubMed] [Google Scholar]
  18. Kleckner N., Roth J., Botstein D. Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. J Mol Biol. 1977 Oct 15;116(1):125–159. doi: 10.1016/0022-2836(77)90123-1. [DOI] [PubMed] [Google Scholar]
  19. Kolb A., Busby S., Buc H., Garges S., Adhya S. Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem. 1993;62:749–795. doi: 10.1146/annurev.bi.62.070193.003533. [DOI] [PubMed] [Google Scholar]
  20. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  21. Legrain C., Stalon V., Glansdorff N., Gigot D., Piéard A., Crabeel M. Structural and regulatory mutations allowing utilization of citrulline or carbamoylaspartate as a source of carbamoylphosphate in Escherichia coli K-12. J Bacteriol. 1976 Oct;128(1):39–48. doi: 10.1128/jb.128.1.39-48.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liu S. L., Hessel A., Sanderson K. E. The XbaI-BlnI-CeuI genomic cleavage map of Salmonella typhimurium LT2 determined by double digestion, end labelling, and pulsed-field gel electrophoresis. J Bacteriol. 1993 Jul;175(13):4104–4120. doi: 10.1128/jb.175.13.4104-4120.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lo T. C., Rayman M. K., Sanwal B. D. Transport of succinate in Escherichia coli. I. Biochemical and genetic studies of transport in whole cells. J Biol Chem. 1972 Oct 10;247(19):6323–6331. [PubMed] [Google Scholar]
  24. Lo T. C., Sanwal B. D. Genetic analysis of mutants of Escherichia coli defective in dicarboxylate transport. Mol Gen Genet. 1975 Oct 22;140(4):303–307. doi: 10.1007/BF00267321. [DOI] [PubMed] [Google Scholar]
  25. Lo T. C. The molecular mechanism of dicarboxylic acid transport in Escherichia coli K 12. J Supramol Struct. 1977;7(3-4):463–480. doi: 10.1002/jss.400070316. [DOI] [PubMed] [Google Scholar]
  26. Maloney P. C. A consensus structure for membrane transport. Res Microbiol. 1990 Mar-Apr;141(3):374–383. doi: 10.1016/0923-2508(90)90015-i. [DOI] [PubMed] [Google Scholar]
  27. Michaels G., Kelln R. A. Construction and use of pyr::lac fusion strains to study regulation of pyrimidine biosynthesis in Salmonella typhimurium. Mol Gen Genet. 1983;189(3):463–470. doi: 10.1007/BF00325910. [DOI] [PubMed] [Google Scholar]
  28. Parada J. L., Ortega M. V., Carrillo-Castañeda G. Biochemical and genetic characteristics of the C4-dicarboxylic acids transport system of Salmonella typhimurium. Arch Mikrobiol. 1973 Dec 4;94(1):65–76. doi: 10.1007/BF00414078. [DOI] [PubMed] [Google Scholar]
  29. Sanderson K. E., Hessel A., Rudd K. E. Genetic map of Salmonella typhimurium, edition VIII. Microbiol Rev. 1995 Jun;59(2):241–303. doi: 10.1128/mr.59.2.241-303.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sofia H. J., Burland V., Daniels D. L., Plunkett G., 3rd, Blattner F. R. Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res. 1994 Jul 11;22(13):2576–2586. doi: 10.1093/nar/22.13.2576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Syvanen J. M., Roth J. R. Structural genes for catalytic and regulatory subunits of aspartate transcarbamylase. J Mol Biol. 1973 May 25;76(3):363–378. doi: 10.1016/0022-2836(73)90510-x. [DOI] [PubMed] [Google Scholar]
  32. Sørensen K. I., Baker K. E., Kelln R. A., Neuhard J. Nucleotide pool-sensitive selection of the transcriptional start site in vivo at the Salmonella typhimurium pyrC and pyrD promoters. J Bacteriol. 1993 Jul;175(13):4137–4144. doi: 10.1128/jb.175.13.4137-4144.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vogel U., Pedersen S., Jensen K. F. An unusual correlation between ppGpp pool size and rate of ribosome synthesis during partial pyrimidine starvation of Escherichia coli. J Bacteriol. 1991 Feb;173(3):1168–1174. doi: 10.1128/jb.173.3.1168-1174.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wang R. F., Kushner S. R. Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene. 1991 Apr;100:195–199. [PubMed] [Google Scholar]
  35. White M. N., Olszowy J., Switzer R. L. Regulation and mechanism of phosphoribosylpyrophosphate synthetase: repression by end products. J Bacteriol. 1971 Oct;108(1):122–131. doi: 10.1128/jb.108.1.122-131.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yan Y., Demerec M. Genetic analysis of pyrimidine mutants of Salmonella typhimurium. Genetics. 1965 Sep;52(3):643–651. doi: 10.1093/genetics/52.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zak V. L., Kelln R. A. 5-Fluoroorotate-resistant mutants of Salmonella typhimurium. Can J Microbiol. 1978 Nov;24(11):1339–1345. doi: 10.1139/m78-216. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES