Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Dec;178(24):7120–7128. doi: 10.1128/jb.178.24.7120-7128.1996

Mutational analysis of nucleoside diphosphate kinase from Pseudomonas aeruginosa: characterization of critical amino acid residues involved in exopolysaccharide alginate synthesis.

G W Sundin 1, S Shankar 1, A M Chakrabarty 1
PMCID: PMC178623  PMID: 8955392

Abstract

We report the utilization of site-directed and random mutagenesis procedures in the gene encoding nucleoside diphosphate kinase (ndk) from Pseudomonas aeruginosa in order to examine the role of Ndk in the production of alginate by this organism. Cellular levels of the 16-kDa form of the Ndk enzyme are greatly reduced in P. aeruginosa 8830 with a knockout mutation in the algR2 gene (8830R2::Cm); this strain is also defective in the production of the exopolysaccharide alginate. In this study, we isolated four mutations in ndk (Ala-14-->Pro [Ala14Pro], Gly21Val, His117Gln, and Ala125Arg) which resulted in the loss of Ndk biochemical activity; hyperexpression of any of these four mutant genes did not restore alginate production to 8830R2::Cm. We identified six additional amino acid residues (Ser-43, Ala-56, Ser-69, Glu-80, Gly-91, and Asp-135) whose alteration resulted in the inability of Ndk to complement alginate production. After hyperproduction in 8830R2::Cm, it was determined that each of these six mutant Ndks was biochemically active. However, in four cases, the in vivo levels of Ndk were reduced, which consequently affected the growth of 8830R2::Cm in the presence of Tween 20. Two mutant Ndk proteins which could not complement the alginate synthesis defect in 8830R2::Cm were not affected in any characteristic examined in the present study. All of the mutant Ndks characterized which were still biochemically active formed membrane complexes with Pk, resulting in GTP synthesis. Two of the four Ndk activity mutants (His117Gln and Ala125Arg) identified were capable of being truncated to 12 kDa and formed a membrane complex with Pk; however, the complexes formed were inactive for GTP synthesis. The other two Ndk activity mutants could be truncated to 12 kDa but were not detected in membrane fractions. These results further our understanding of the role of Ndk in alginate synthesis and identify amino acid residues in Ndk which have not previously been studied as critical to this process.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almaula N., Lu Q., Delgado J., Belkin S., Inouye M. Nucleoside diphosphate kinase from Escherichia coli. J Bacteriol. 1995 May;177(9):2524–2529. doi: 10.1128/jb.177.9.2524-2529.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bourne H. R., Sanders D. A., McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature. 1991 Jan 10;349(6305):117–127. doi: 10.1038/349117a0. [DOI] [PubMed] [Google Scholar]
  3. Bowman B. J., Blasco F., Slayman C. W. Purification and characterization of the plasma membrane ATPase of Neurospora crassa. J Biol Chem. 1981 Dec 10;256(23):12343–12349. [PubMed] [Google Scholar]
  4. Chiadmi M., Moréra S., Lascu I., Dumas C., Le Bras G., Véron M., Janin J. Crystal structure of the Awd nucleotide diphosphate kinase from Drosophila. Structure. 1993 Dec 15;1(4):283–293. doi: 10.1016/0969-2126(93)90016-a. [DOI] [PubMed] [Google Scholar]
  5. Darzins A., Chakrabarty A. M. Cloning of genes controlling alginate biosynthesis from a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa. J Bacteriol. 1984 Jul;159(1):9–18. doi: 10.1128/jb.159.1.9-18.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dumas C., Lascu I., Moréra S., Glaser P., Fourme R., Wallet V., Lacombe M. L., Véron M., Janin J. X-ray structure of nucleoside diphosphate kinase. EMBO J. 1992 Sep;11(9):3203–3208. doi: 10.1002/j.1460-2075.1992.tb05397.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Figurski D. H., Helinski D. R. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1648–1652. doi: 10.1073/pnas.76.4.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fukuda M., Ishii A., Yasutomo Y., Shimada N., Ishikawa N., Hanai N., Nagata N., Irimura T., Nicolson G. L., Kimura N. Decreased expression of nucleoside diphosphate kinase alpha isoform, an nm23-H2 gene homolog, is associated with metastatic potential of rat mammary-adenocarcinoma cells. Int J Cancer. 1996 Feb 8;65(4):531–537. doi: 10.1002/(SICI)1097-0215(19960208)65:4<531::AID-IJC23>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  9. Fürste J. P., Pansegrau W., Frank R., Blöcker H., Scholz P., Bagdasarian M., Lanka E. Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene. 1986;48(1):119–131. doi: 10.1016/0378-1119(86)90358-6. [DOI] [PubMed] [Google Scholar]
  10. Gilles A. M., Presecan E., Vonica A., Lascu I. Nucleoside diphosphate kinase from human erythrocytes. Structural characterization of the two polypeptide chains responsible for heterogeneity of the hexameric enzyme. J Biol Chem. 1991 May 15;266(14):8784–8789. [PubMed] [Google Scholar]
  11. Kavanaugh-Black A., Connolly D. M., Chugani S. A., Chakrabarty A. M. Characterization of nucleoside-diphosphate kinase from Pseudomonas aeruginosa: complex formation with succinyl-CoA synthetase. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5883–5887. doi: 10.1073/pnas.91.13.5883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kaziro Y., Itoh H., Kozasa T., Nakafuku M., Satoh T. Structure and function of signal-transducing GTP-binding proteins. Annu Rev Biochem. 1991;60:349–400. doi: 10.1146/annurev.bi.60.070191.002025. [DOI] [PubMed] [Google Scholar]
  13. Kimura N., Shimada N. Membrane-associated nucleoside diphosphate kinase from rat liver. Purification, characterization, and comparison with cytosolic enzyme. J Biol Chem. 1988 Apr 5;263(10):4647–4653. [PubMed] [Google Scholar]
  14. Lascu I., Chaffotte A., Limbourg-Bouchon B., Véron M. A Pro/Ser substitution in nucleoside diphosphate kinase of Drosophila melanogaster (mutation killer of prune) affects stability but not catalytic efficiency of the enzyme. J Biol Chem. 1992 Jun 25;267(18):12775–12781. [PubMed] [Google Scholar]
  15. Leone A., Flatow U., King C. R., Sandeen M. A., Margulies I. M., Liotta L. A., Steeg P. S. Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm23-transfected melanoma cells. Cell. 1991 Apr 5;65(1):25–35. doi: 10.1016/0092-8674(91)90404-m. [DOI] [PubMed] [Google Scholar]
  16. MacDonald N. J., De la Rosa A., Benedict M. A., Freije J. M., Krutsch H., Steeg P. S. A serine phosphorylation of Nm23, and not its nucleoside diphosphate kinase activity, correlates with suppression of tumor metastatic potential. J Biol Chem. 1993 Dec 5;268(34):25780–25789. [PubMed] [Google Scholar]
  17. Mathews C. K. The cell-bag of enzymes or network of channels? J Bacteriol. 1993 Oct;175(20):6377–6381. doi: 10.1128/jb.175.20.6377-6381.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. May T. B., Chakrabarty A. M. Isolation and assay of Pseudomonas aeruginosa alginate. Methods Enzymol. 1994;235:295–304. doi: 10.1016/0076-6879(94)35148-1. [DOI] [PubMed] [Google Scholar]
  19. May T. B., Chakrabarty A. M. Pseudomonas aeruginosa: genes and enzymes of alginate synthesis. Trends Microbiol. 1994 May;2(5):151–157. doi: 10.1016/0966-842x(94)90664-5. [DOI] [PubMed] [Google Scholar]
  20. May T. B., Shinabarger D., Boyd A., Chakrabarty A. M. Identification of amino acid residues involved in the activity of phosphomannose isomerase-guanosine 5'-diphospho-D-mannose pyrophosphorylase. A bifunctional enzyme in the alginate biosynthetic pathway of Pseudomonas aeruginosa. J Biol Chem. 1994 Feb 18;269(7):4872–4877. [PubMed] [Google Scholar]
  21. Moréra S., Lascu I., Dumas C., LeBras G., Briozzo P., Véron M., Janin J. Adenosine 5'-diphosphate binding and the active site of nucleoside diphosphate kinase. Biochemistry. 1994 Jan 18;33(2):459–467. doi: 10.1021/bi00168a010. [DOI] [PubMed] [Google Scholar]
  22. Muñoz-Dorado J., Almaula N., Inouye S., Inouye M. Autophosphorylation of nucleoside diphosphate kinase from Myxococcus xanthus. J Bacteriol. 1993 Feb;175(4):1176–1181. doi: 10.1128/jb.175.4.1176-1181.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Okabe-Kado J., Kasukabe T., Hozumi M., Honma Y., Kimura N., Baba H., Urano T., Shiku H. A new function of Nm23/NDP kinase as a differentiation inhibitory factor, which does not require it's kinase activity. FEBS Lett. 1995 Apr 24;363(3):311–315. doi: 10.1016/0014-5793(95)00338-a. [DOI] [PubMed] [Google Scholar]
  24. Pall M. L. GTP: a central regulator of cellular anabolism. Curr Top Cell Regul. 1985;25:1–20. doi: 10.1016/b978-0-12-152825-6.50005-9. [DOI] [PubMed] [Google Scholar]
  25. Postel E. H., Berberich S. J., Flint S. J., Ferrone C. A. Human c-myc transcription factor PuF identified as nm23-H2 nucleoside diphosphate kinase, a candidate suppressor of tumor metastasis. Science. 1993 Jul 23;261(5120):478–480. doi: 10.1126/science.8392752. [DOI] [PubMed] [Google Scholar]
  26. Randazzo P. A., Northup J. K., Kahn R. A. Regulatory GTP-binding proteins (ADP-ribosylation factor, Gt, and RAS) are not activated directly by nucleoside diphosphate kinase. J Biol Chem. 1992 Sep 5;267(25):18182–18189. [PubMed] [Google Scholar]
  27. Ray N. B., Mathews C. K. Nucleoside diphosphokinase: a functional link between intermediary metabolism and nucleic acid synthesis. Curr Top Cell Regul. 1992;33:343–357. doi: 10.1016/b978-0-12-152833-1.50025-3. [DOI] [PubMed] [Google Scholar]
  28. Saeki T., Hori M., Umezawa H. Pyruvate kinase of Escherichia coli. Its role in supplying nucleoside triphosphates in cells under anaerobic conditions. J Biochem. 1974 Sep;76(3):631–637. doi: 10.1093/oxfordjournals.jbchem.a130607. [DOI] [PubMed] [Google Scholar]
  29. Schlictman D., Kavanaugh-Black A., Shankar S., Chakrabarty A. M. Energy metabolism and alginate biosynthesis in Pseudomonas aeruginosa: role of the tricarboxylic acid cycle. J Bacteriol. 1994 Oct;176(19):6023–6029. doi: 10.1128/jb.176.19.6023-6029.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schlictman D., Kubo M., Shankar S., Chakrabarty A. M. Regulation of nucleoside diphosphate kinase and secretable virulence factors in Pseudomonas aeruginosa: roles of algR2 and algH. J Bacteriol. 1995 May;177(9):2469–2474. doi: 10.1128/jb.177.9.2469-2474.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shankar S., Kamath S., Chakrabarty A. M. Two forms of the nucleoside diphosphate kinase of Pseudomonas aeruginosa 8830: altered specificity of nucleoside triphosphate synthesis by the cell membrane-associated form of the truncated enzyme. J Bacteriol. 1996 Apr;178(7):1777–1781. doi: 10.1128/jb.178.7.1777-1781.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shankar S., Schlictman D., Chakrabarty A. M. Regulation of nucleoside diphosphate kinase and an alternative kinase in Escherichia coli: role of the sspA and rnk genes in nucleoside triphosphate formation. Mol Microbiol. 1995 Sep;17(5):935–943. doi: 10.1111/j.1365-2958.1995.mmi_17050935.x. [DOI] [PubMed] [Google Scholar]
  33. Shankar S., Ye R. W., Schlictman D., Chakrabarty A. M. Exopolysaccharide alginate synthesis in Pseudomonas aeruginosa: enzymology and regulation of gene expression. Adv Enzymol Relat Areas Mol Biol. 1995;70:221–255. doi: 10.1002/9780470123164.ch4. [DOI] [PubMed] [Google Scholar]
  34. Sonnemann J., Mutzel R. Cytosolic nucleoside diphosphate kinase associated with the translation apparatus may provide GTP for protein synthesis. Biochem Biophys Res Commun. 1995 Apr 17;209(2):490–496. doi: 10.1006/bbrc.1995.1528. [DOI] [PubMed] [Google Scholar]
  35. Sood P., Lerner C. G., Shimamoto T., Lu Q., Inouye M. Characterization of the autophosphorylation of Era, an essential Escherichia coli GTPase. Mol Microbiol. 1994 Apr;12(2):201–208. doi: 10.1111/j.1365-2958.1994.tb01009.x. [DOI] [PubMed] [Google Scholar]
  36. Steeg P. S., Bevilacqua G., Kopper L., Thorgeirsson U. P., Talmadge J. E., Liotta L. A., Sobel M. E. Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst. 1988 Apr 6;80(3):200–204. doi: 10.1093/jnci/80.3.200. [DOI] [PubMed] [Google Scholar]
  37. Sundin G. W., Shankar S., Chugani S. A., Chopade B. A., Kavanaugh-Black A., Chakrabarty A. M. Nucleoside diphosphate kinase from Pseudomonas aeruginosa: characterization of the gene and its role in cellular growth and exopolysaccharide alginate synthesis. Mol Microbiol. 1996 Jun;20(5):965–979. doi: 10.1111/j.1365-2958.1996.tb02538.x. [DOI] [PubMed] [Google Scholar]
  38. Tepper A. D., Dammann H., Bominaar A. A., Véron M. Investigation of the active site and the conformational stability of nucleoside diphosphate kinase by site-directed mutagenesis. J Biol Chem. 1994 Dec 23;269(51):32175–32180. [PubMed] [Google Scholar]
  39. Williams R. L., Oren D. A., Muñoz-Dorado J., Inouye S., Inouye M., Arnold E. Crystal structure of Myxococcus xanthus nucleoside diphosphate kinase and its interaction with a nucleotide substrate at 2.0 A resolution. J Mol Biol. 1993 Dec 20;234(4):1230–1247. doi: 10.1006/jmbi.1993.1673. [DOI] [PubMed] [Google Scholar]
  40. Wu T. H., Clarke C. H., Marinus M. G. Specificity of Escherichia coli mutD and mutL mutator strains. Gene. 1990 Mar 1;87(1):1–5. doi: 10.1016/0378-1119(90)90488-d. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES