Abstract
Rhizobium bacteria fix atmospheric nitrogen during symbiosis with legume plants only after bacterial division is arrested. The role of the major vegetative sigma factor, SigA, utilized by Rhizobium bacteria during symbiosis is unknown. By using PCR technology, a portion of the sigA gene corresponding to domain II was directly amplified from Rhizobium etli total DNA by using two primers designed in accordance with the published sequence of sigA from Agrobacterium tumefaciens. The amplified fragment was cloned and used as a hybridization probe for cloning of the R. etli sigA gene. Sequencing data revealed an open reading frame of 2,055 bp showing extensive similarity to various vegetative sigma factors. The 5' end of the sigA transcript was determined and revealed a long, seemingly untranslated region of 170 nucleotides. Quantitative analysis of the sigA transcript by RNase protection and by primer extension assays indicated its down-regulation during entry into the stationary phase. On the basis of the structures of various vegetative sigma factors and considering previous information on heterologous expression, we speculate on the function of domain I of vegetative sigma factors.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amemiya K., Shapiro L. Differential template recognition by the Caulobacter crescentus and the escherichia coli RNA polymerases. J Biol Chem. 1983 Jul 25;258(14):8984–8992. [PubMed] [Google Scholar]
- Bae Y. M., Stauffer G. V. Mutations that affect activity of the Rhizobium meliloti trpE(G) promoter in Rhizobium meliloti and Escherichia coli. J Bacteriol. 1991 Sep;173(18):5831–5836. doi: 10.1128/jb.173.18.5831-5836.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnett M. J., Rushing B. G., Fisher R. F., Long S. R. Transcription start sites for syrM and nodD3 flank an insertion sequence relic in Rhizobium meliloti. J Bacteriol. 1996 Apr;178(7):1782–1787. doi: 10.1128/jb.178.7.1782-1787.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caetano-Anollés G., Gresshoff P. M. Plant genetic control of nodulation. Annu Rev Microbiol. 1991;45:345–382. doi: 10.1146/annurev.mi.45.100191.002021. [DOI] [PubMed] [Google Scholar]
- Dombroski A. J., Walter W. A., Gross C. A. Amino-terminal amino acids modulate sigma-factor DNA-binding activity. Genes Dev. 1993 Dec;7(12A):2446–2455. doi: 10.1101/gad.7.12a.2446. [DOI] [PubMed] [Google Scholar]
- Fisher R. F., Brierley H. L., Mulligan J. T., Long S. R. Transcription of Rhizobium meliloti nodulation genes. Identification of a nodD transcription initiation site in vitro and in vivo. J Biol Chem. 1987 May 15;262(14):6849–6855. [PubMed] [Google Scholar]
- Fujita M., Tanaka K., Takahashi H., Amemura A. Transcription of the principal sigma-factor genes, rpoD and rpoS, in Pseudomonas aeruginosa is controlled according to the growth phase. Mol Microbiol. 1994 Sep;13(6):1071–1077. doi: 10.1111/j.1365-2958.1994.tb00498.x. [DOI] [PubMed] [Google Scholar]
- Helmann J. D., Chamberlin M. J. Structure and function of bacterial sigma factors. Annu Rev Biochem. 1988;57:839–872. doi: 10.1146/annurev.bi.57.070188.004203. [DOI] [PubMed] [Google Scholar]
- Jishage M., Ishihama A. Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of sigma 70 and sigma 38. J Bacteriol. 1995 Dec;177(23):6832–6835. doi: 10.1128/jb.177.23.6832-6835.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kassavetis G. A., Geiduschek E. P. Bacteriophage T4 late promoters: mapping 5' ends of T4 gene 23 mRNAs. EMBO J. 1982;1(1):107–114. doi: 10.1002/j.1460-2075.1982.tb01132.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lonetto M., Gribskov M., Gross C. A. The sigma 70 family: sequence conservation and evolutionary relationships. J Bacteriol. 1992 Jun;174(12):3843–3849. doi: 10.1128/jb.174.12.3843-3849.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Long S. R. Rhizobium-legume nodulation: life together in the underground. Cell. 1989 Jan 27;56(2):203–214. doi: 10.1016/0092-8674(89)90893-3. [DOI] [PubMed] [Google Scholar]
- Malakooti J., Ely B. Principal sigma subunit of the Caulobacter crescentus RNA polymerase. J Bacteriol. 1995 Dec;177(23):6854–6860. doi: 10.1128/jb.177.23.6854-6860.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martino M., Riccio A., Defez R., Iaccarino M., Patriarca E. J. In vitro characterization of the ORF1-ntrBC promoter of Rhizobium etli. FEBS Lett. 1996 Jun 10;388(1):53–58. doi: 10.1016/0014-5793(96)00507-8. [DOI] [PubMed] [Google Scholar]
- Merrick M. J., Edwards R. A. Nitrogen control in bacteria. Microbiol Rev. 1995 Dec;59(4):604–622. doi: 10.1128/mr.59.4.604-622.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noel K. D., Sanchez A., Fernandez L., Leemans J., Cevallos M. A. Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J Bacteriol. 1984 Apr;158(1):148–155. doi: 10.1128/jb.158.1.148-155.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patriarca E. J., Riccio A., Taté R., Colonna-Romano S., Iaccarino M., Defez R. The ntrBC genes of Rhizobium leguminosarum are part of a complex operon subject to negative regulation. Mol Microbiol. 1993 Aug;9(3):569–577. doi: 10.1111/j.1365-2958.1993.tb01717.x. [DOI] [PubMed] [Google Scholar]
- Rushing B. G., Long S. R. Cloning and characterization of the sigA gene encoding the major sigma subunit of Rhizobium meliloti. J Bacteriol. 1995 Dec;177(23):6952–6957. doi: 10.1128/jb.177.23.6952-6957.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Segal G., Ron E. Z. Cloning, sequencing, and transcriptional analysis of the gene coding for the vegetative sigma factor of Agrobacterium tumefaciens. J Bacteriol. 1993 May;175(10):3026–3030. doi: 10.1128/jb.175.10.3026-3030.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stragier P., Losick R. Cascades of sigma factors revisited. Mol Microbiol. 1990 Nov;4(11):1801–1806. doi: 10.1111/j.1365-2958.1990.tb02028.x. [DOI] [PubMed] [Google Scholar]
- Szeto W. W., Nixon B. T., Ronson C. W., Ausubel F. M. Identification and characterization of the Rhizobium meliloti ntrC gene: R. meliloti has separate regulatory pathways for activation of nitrogen fixation genes in free-living and symbiotic cells. J Bacteriol. 1987 Apr;169(4):1423–1432. doi: 10.1128/jb.169.4.1423-1432.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanaka K., Takayanagi Y., Fujita N., Ishihama A., Takahashi H. Heterogeneity of the principal sigma factor in Escherichia coli: the rpoS gene product, sigma 38, is a second principal sigma factor of RNA polymerase in stationary-phase Escherichia coli. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3511–3515. doi: 10.1073/pnas.90.8.3511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]