Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Dec;178(24):7144–7151. doi: 10.1128/jb.178.24.7144-7151.1996

FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin.

W S Lo 1, A M Dranginis 1
PMCID: PMC178626  PMID: 8955395

Abstract

We report the characterization of a gene encoding a novel flocculin related to the STA genes of yeast, which encode secreted glucoamylase. The STA genes comprise sequences that are homologous to the sporulation-specific glucoamylase SGA and to two other sequences, S2 and S1. We find that S2 and S1 are part of a single gene which we have named FLO11. The sequence of FLO11 reveals a 4,104-bp open reading frame on chromosome IX whose predicted product is similar in overall structure to the class of yeast serine/threonine-rich GPI-anchored cell wall proteins. An amino-terminal domain containing a signal sequence and a carboxy-terminal domain with homology to GPI (glycosyl-phosphatidyl-inositol) anchor-containing proteins are separated by a central domain containing a highly repeated threonine- and serine-rich sequence. Yeast cells that express FLO11 aggregate in the calcium-dependent process of flocculation. Flocculation is abolished when FLO11 is disrupted. The product of STA1 also is shown to have flocculating activity. When a green fluorescent protein fusion of FLO11 was expressed from the FLO11 promoter on a single-copy plasmid, fluorescence was observed in vivo at the periphery of cells. We propose that FLO11 encodes a flocculin because of its demonstrated role in flocculation, its structural similarity to other members of the FLO gene family, and the cell surface location of its product. FLO11 gene sequences are present in all yeast strains tested, including all standard laboratory strains, unlike the STA genes which are present only in the variant strain Saccharomyces cerevisiae var. diastaticus. FLO11 differs from all other yeast flocculins in that it is located near a centromere rather than a telomere, and its expression is regulated by mating type. Repression of FLO11-dependent flocculation in diploids is conferred by the mating-type repressor al/alpha2.

Full Text

The Full Text of this article is available as a PDF (442.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bidard F., Blondin B., Dequin S., Vezinhet F., Barre P. Cloning and analysis of a FLO5 flocculation gene from S. cerevisiae. Curr Genet. 1994 Mar;25(3):196–201. doi: 10.1007/BF00357162. [DOI] [PubMed] [Google Scholar]
  2. Boone C., Sommer S. S., Hensel A., Bussey H. Yeast KRE genes provide evidence for a pathway of cell wall beta-glucan assembly. J Cell Biol. 1990 May;110(5):1833–1843. doi: 10.1083/jcb.110.5.1833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C. Green fluorescent protein as a marker for gene expression. Science. 1994 Feb 11;263(5148):802–805. doi: 10.1126/science.8303295. [DOI] [PubMed] [Google Scholar]
  4. Chen M. H., Shen Z. M., Bobin S., Kahn P. C., Lipke P. N. Structure of Saccharomyces cerevisiae alpha-agglutinin. Evidence for a yeast cell wall protein with multiple immunoglobulin-like domains with atypical disulfides. J Biol Chem. 1995 Nov 3;270(44):26168–26177. doi: 10.1074/jbc.270.44.26168. [DOI] [PubMed] [Google Scholar]
  5. Christianson T. W., Sikorski R. S., Dante M., Shero J. H., Hieter P. Multifunctional yeast high-copy-number shuttle vectors. Gene. 1992 Jan 2;110(1):119–122. doi: 10.1016/0378-1119(92)90454-w. [DOI] [PubMed] [Google Scholar]
  6. Clancy M. J., Smith L. M., Magee P. T. Developmental regulation of a sporulation-specific enzyme activity in Saccharomyces cerevisiae. Mol Cell Biol. 1982 Feb;2(2):171–178. doi: 10.1128/mcb.2.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dranginis A. M. Binding of yeast a1 and alpha 2 as a heterodimer to the operator DNA of a haploid-specific gene. Nature. 1990 Oct 18;347(6294):682–685. doi: 10.1038/347682a0. [DOI] [PubMed] [Google Scholar]
  8. Dranginis A. M. Regulation of STA1 gene expression by MAT during the life cycle of Saccharomyces cerevisiae. Mol Cell Biol. 1989 Sep;9(9):3992–3998. doi: 10.1128/mcb.9.9.3992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gerber L. D., Kodukula K., Udenfriend S. Phosphatidylinositol glycan (PI-G) anchored membrane proteins. Amino acid requirements adjacent to the site of cleavage and PI-G attachment in the COOH-terminal signal peptide. J Biol Chem. 1992 Jun 15;267(17):12168–12173. [PubMed] [Google Scholar]
  10. Goutte C., Johnson A. D. Yeast a1 and alpha 2 homeodomain proteins form a DNA-binding activity with properties distinct from those of either protein. J Mol Biol. 1993 Oct 5;233(3):359–371. doi: 10.1006/jmbi.1993.1517. [DOI] [PubMed] [Google Scholar]
  11. Goutte C., Johnson A. D. a1 protein alters the DNA binding specificity of alpha 2 repressor. Cell. 1988 Mar 25;52(6):875–882. doi: 10.1016/0092-8674(88)90429-1. [DOI] [PubMed] [Google Scholar]
  12. Guarente L., Ptashne M. Fusion of Escherichia coli lacZ to the cytochrome c gene of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2199–2203. doi: 10.1073/pnas.78.4.2199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gum J. R., Jr, Hicks J. W., Toribara N. W., Rothe E. M., Lagace R. E., Kim Y. S. The human MUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J Biol Chem. 1992 Oct 25;267(30):21375–21383. [PubMed] [Google Scholar]
  14. Hauser K., Tanner W. Purification of the inducible alpha-agglutinin of S. cerevisiae and molecular cloning of the gene. FEBS Lett. 1989 Sep 25;255(2):290–294. doi: 10.1016/0014-5793(89)81108-1. [DOI] [PubMed] [Google Scholar]
  15. Herskowitz I., Jensen R. E. Putting the HO gene to work: practical uses for mating-type switching. Methods Enzymol. 1991;194:132–146. doi: 10.1016/0076-6879(91)94011-z. [DOI] [PubMed] [Google Scholar]
  16. Klis F. M. Review: cell wall assembly in yeast. Yeast. 1994 Jul;10(7):851–869. doi: 10.1002/yea.320100702. [DOI] [PubMed] [Google Scholar]
  17. Lambrechts M. G., Pretorius I. S., Marmur J., Sollitti P. The S1, S2 and SGA1 ancestral genes for the STA glucoamylase genes all map to chromosome IX in Saccharomyces cerevisiae. Yeast. 1995 Jun 30;11(8):783–787. doi: 10.1002/yea.320110810. [DOI] [PubMed] [Google Scholar]
  18. Lambrechts M. G., Pretorius I. S., Sollitti P., Marmur J. Primary structure and regulation of a glucoamylase-encoding gene (STA2) in Saccharomyces diastaticus. Gene. 1991 Apr;100:95–103. doi: 10.1016/0378-1119(91)90354-e. [DOI] [PubMed] [Google Scholar]
  19. Lipke P. N., Wojciechowicz D., Kurjan J. AG alpha 1 is the structural gene for the Saccharomyces cerevisiae alpha-agglutinin, a cell surface glycoprotein involved in cell-cell interactions during mating. Mol Cell Biol. 1989 Aug;9(8):3155–3165. doi: 10.1128/mcb.9.8.3155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lu C. F., Kurjan J., Lipke P. N. A pathway for cell wall anchorage of Saccharomyces cerevisiae alpha-agglutinin. Mol Cell Biol. 1994 Jul;14(7):4825–4833. doi: 10.1128/mcb.14.7.4825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miller A. M., MacKay V. L., Nasmyth K. A. Identification and comparison of two sequence elements that confer cell-type specific transcription in yeast. Nature. 1985 Apr 18;314(6012):598–603. doi: 10.1038/314598a0. [DOI] [PubMed] [Google Scholar]
  22. Mukai Y., Harashima S., Oshima Y. AAR1/TUP1 protein, with a structure similar to that of the beta subunit of G proteins, is required for a1-alpha 2 and alpha 2 repression in cell type control of Saccharomyces cerevisiae. Mol Cell Biol. 1991 Jul;11(7):3773–3779. doi: 10.1128/mcb.11.7.3773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nuoffer C., Jenö P., Conzelmann A., Riezman H. Determinants for glycophospholipid anchoring of the Saccharomyces cerevisiae GAS1 protein to the plasma membrane. Mol Cell Biol. 1991 Jan;11(1):27–37. doi: 10.1128/mcb.11.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pretorius I. S., Lambrechts M. G., Marmur J. The glucoamylase multigene family in Saccharomyces cerevisiae var. diastaticus: an overview. Crit Rev Biochem Mol Biol. 1991;26(1):53–76. doi: 10.3109/10409239109081720. [DOI] [PubMed] [Google Scholar]
  25. Pretorius I. S., Modena D., Vanoni M., Englard S., Marmur J. Transcriptional control of glucoamylase synthesis in vegetatively growing and sporulating Saccharomyces species. Mol Cell Biol. 1986 Sep;6(9):3034–3041. doi: 10.1128/mcb.6.9.3034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Roberts R. L., Fink G. R. Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev. 1994 Dec 15;8(24):2974–2985. doi: 10.1101/gad.8.24.2974. [DOI] [PubMed] [Google Scholar]
  27. Rose M., Grisafi P., Botstein D. Structure and function of the yeast URA3 gene: expression in Escherichia coli. Gene. 1984 Jul-Aug;29(1-2):113–124. doi: 10.1016/0378-1119(84)90172-0. [DOI] [PubMed] [Google Scholar]
  28. Rothstein R. J., Sherman F. Genes affecting the expression of cytochrome c in yeast: genetic mapping and genetic interactions. Genetics. 1980 Apr;94(4):871–889. doi: 10.1093/genetics/94.4.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Roy A., Lu C. F., Marykwas D. L., Lipke P. N., Kurjan J. The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin. Mol Cell Biol. 1991 Aug;11(8):4196–4206. doi: 10.1128/mcb.11.8.4196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schultz J., Carlson M. Molecular analysis of SSN6, a gene functionally related to the SNF1 protein kinase of Saccharomyces cerevisiae. Mol Cell Biol. 1987 Oct;7(10):3637–3645. doi: 10.1128/mcb.7.10.3637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stratford M. Another brick in the wall? Recent developments concerning the yeast cell envelope. Yeast. 1994 Dec;10(13):1741–1752. doi: 10.1002/yea.320101307. [DOI] [PubMed] [Google Scholar]
  33. Tatchell K., Nasmyth K. A., Hall B. D., Astell C., Smith M. In vitro mutation analysis of the mating-type locus in yeast. Cell. 1981 Nov;27(1 Pt 2):25–35. doi: 10.1016/0092-8674(81)90357-3. [DOI] [PubMed] [Google Scholar]
  34. Teunissen A. W., Holub E., van der Hucht J., van den Berg J. A., Steensma H. Y. Sequence of the open reading frame of the FLO1 gene from Saccharomyces cerevisiae. Yeast. 1993 Apr;9(4):423–427. doi: 10.1002/yea.320090413. [DOI] [PubMed] [Google Scholar]
  35. Teunissen A. W., Steensma H. Y. Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast. 1995 Sep 15;11(11):1001–1013. doi: 10.1002/yea.320111102. [DOI] [PubMed] [Google Scholar]
  36. Teunissen A. W., van den Berg J. A., Steensma H. Y. Localization of the dominant flocculation genes FLO5 and FLO8 of Saccharomyces cerevisiae. Yeast. 1995 Jun 30;11(8):735–745. doi: 10.1002/yea.320110805. [DOI] [PubMed] [Google Scholar]
  37. Teunissen A. W., van den Berg J. A., Steensma H. Y. Transcriptional regulation of flocculation genes in Saccharomyces cerevisiae. Yeast. 1995 Apr 30;11(5):435–446. doi: 10.1002/yea.320110506. [DOI] [PubMed] [Google Scholar]
  38. Trumbly R. J. Cloning and characterization of the CYC8 gene mediating glucose repression in yeast. Gene. 1988 Dec 15;73(1):97–111. doi: 10.1016/0378-1119(88)90316-2. [DOI] [PubMed] [Google Scholar]
  39. Vai M., Gatti E., Lacanà E., Popolo L., Alberghina L. Isolation and deduced amino acid sequence of the gene encoding gp115, a yeast glycophospholipid-anchored protein containing a serine-rich region. J Biol Chem. 1991 Jul 5;266(19):12242–12248. [PubMed] [Google Scholar]
  40. Watari J., Takata Y., Ogawa M., Sahara H., Koshino S., Onnela M. L., Airaksinen U., Jaatinen R., Penttilä M., Keränen S. Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast. 1994 Feb;10(2):211–225. doi: 10.1002/yea.320100208. [DOI] [PubMed] [Google Scholar]
  41. Wickner R. B. Mutants of Saccharomyces cerevisiae that incorporate deoxythymidine-5'-monophosphate into deoxyribonucleic acid in vivo. J Bacteriol. 1974 Jan;117(1):252–260. doi: 10.1128/jb.117.1.252-260.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Winston F., Dollard C., Ricupero-Hovasse S. L. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast. 1995 Jan;11(1):53–55. doi: 10.1002/yea.320110107. [DOI] [PubMed] [Google Scholar]
  43. Wojciechowicz D., Lu C. F., Kurjan J., Lipke P. N. Cell surface anchorage and ligand-binding domains of the Saccharomyces cerevisiae cell adhesion protein alpha-agglutinin, a member of the immunoglobulin superfamily. Mol Cell Biol. 1993 Apr;13(4):2554–2563. doi: 10.1128/mcb.13.4.2554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yamashita I., Fukui S. Transcriptional control of the sporulation-specific glucoamylase gene in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1985 Nov;5(11):3069–3073. doi: 10.1128/mcb.5.11.3069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yamashita I., Maemura T., Hatano T., Fukui S. Polymorphic extracellular glucoamylase genes and their evolutionary origin in the yeast Saccharomyces diastaticus. J Bacteriol. 1985 Feb;161(2):574–582. doi: 10.1128/jb.161.2.574-582.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yamashita I., Nakamura M., Fukui S. Gene fusion is a possible mechanism underlying the evolution of STA1. J Bacteriol. 1987 May;169(5):2142–2149. doi: 10.1128/jb.169.5.2142-2149.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yamashita I., Suzuki K., Fukui S. Nucleotide sequence of the extracellular glucoamylase gene STA1 in the yeast Saccharomyces diastaticus. J Bacteriol. 1985 Feb;161(2):567–573. doi: 10.1128/jb.161.2.567-573.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yamashita I., Takano Y., Fukui S. Control of STA1 gene expression by the mating-type locus in yeasts. J Bacteriol. 1985 Nov;164(2):769–773. doi: 10.1128/jb.164.2.769-773.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. de Steensma H. Y., de Jonge P., Kaptein A., Kaback D. B. Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: localization of a repeated sequence containing an acid phosphatase gene near a telomere of chromosome I and chromosome VIII. Curr Genet. 1989 Sep;16(3):131–137. doi: 10.1007/BF00391468. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES