Abstract
The food-borne pathogen Clostridium perfringens, which is an obligate anaerobe, showed growth under conditions of oxidative stress. In protein extracts we looked for superoxide dismutase (SOD) activities which might scavenge highly toxic superoxide radicals evolving under such stress conditions. Using the classical assay to detect SOD activity on gels after electrophoresis of C. perfringens proteins, we obtained a pattern of three major bands indicating SOD activity. The protein representing the brightest band was purified by three chromatographic steps. On the basis of 20 amino acids determined from the N terminus of the protein, we designed a degenerate oligonucleotide probe to isolate the corresponding gene. We finally sequenced an open reading frame of 195 amino acids (molecular mass, 21,159 Da) with a strong homology to the Desulfovibrio vulgaris rubrerythrin; therefore, we assumed to have cloned a rubrerythrin gene from C. perfringens, and we named it rbr. The C-terminal region of the newly detected rubrerythrin from C. perfringens contains a characteristic non-heme, non-sulfur iron-binding site -Cys-X-X-Cys-(X)12-Cys-X-X-Cys- similar to that found in rubrerythrin from D. vulgaris. In addition, three -Glu-X-X-His- sequences could represent diiron binding domains. We observed SOD activity in extracts of Escherichia coli strains containing the recombinant rbr gene from C. perfringens. A biological function of rubrerythrin as SOD was confirmed with the functional complementation by the rbr gene of an E. coli mutant strain lacking SOD activity. We therefore suppose that rubrerythrin plays a role as a scavenger of oxygen radicals.
Full Text
The Full Text of this article is available as a PDF (749.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
- Bertram J., Strätz M., Dürre P. Natural transfer of conjugative transposon Tn916 between gram-positive and gram-negative bacteria. J Bacteriol. 1991 Jan;173(2):443–448. doi: 10.1128/jb.173.2.443-448.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beyer W. F., Jr, Fridovich I. In vivo competition between iron and manganese for occupancy of the active site region of the manganese-superoxide dismutase of Escherichia coli. J Biol Chem. 1991 Jan 5;266(1):303–308. [PubMed] [Google Scholar]
- Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
- Carlioz A., Touati D. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J. 1986 Mar;5(3):623–630. doi: 10.1002/j.1460-2075.1986.tb04256.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen L., Sharma P., Le Gall J., Mariano A. M., Teixeira M., Xavier A. V. A blue non-heme iron protein from Desulfovibrio gigas. Eur J Biochem. 1994 Dec 1;226(2):613–618. doi: 10.1111/j.1432-1033.1994.tb20087.x. [DOI] [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- Dave B. C., Czernuszewicz R. S., Prickril B. C., Kurtz D. M., Jr Resonance Raman spectroscopic evidence for the FeS4 and Fe-O-Fe sites in rubrerythrin from Desulfovibrio vulgaris. Biochemistry. 1994 Mar 29;33(12):3572–3576. doi: 10.1021/bi00178a013. [DOI] [PubMed] [Google Scholar]
- Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gupta N., Bonomi F., Kurtz D. M., Jr, Ravi N., Wang D. L., Huynh B. H. Recombinant Desulfovibrio vulgaris rubrerythrin. Isolation and characterization of the diiron domain. Biochemistry. 1995 Mar 14;34(10):3310–3318. doi: 10.1021/bi00010a021. [DOI] [PubMed] [Google Scholar]
- Hewitt J., Morris J. G. Superoxide dismutase in some obligately anaerobic bacteria. FEBS Lett. 1975 Feb 15;50(3):315–318. doi: 10.1016/0014-5793(75)80518-7. [DOI] [PubMed] [Google Scholar]
- Kurtz D. M., Jr, Prickril B. C. Intrapeptide sequence homology in rubrerythrin from Desulfovibrio vulgaris: identification of potential ligands to the diiron site. Biochem Biophys Res Commun. 1991 Nov 27;181(1):337–341. doi: 10.1016/s0006-291x(05)81423-8. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- LeGall J., Prickril B. C., Moura I., Xavier A. V., Moura J. J., Huynh B. H. Isolation and characterization of rubrerythrin, a non-heme iron protein from Desulfovibrio vulgaris that contains rubredoxin centers and a hemerythrin-like binuclear iron cluster. Biochemistry. 1988 Mar 8;27(5):1636–1642. doi: 10.1021/bi00405a037. [DOI] [PubMed] [Google Scholar]
- Marklund S., Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974 Sep 16;47(3):469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x. [DOI] [PubMed] [Google Scholar]
- Meile L., Fischer K., Leisinger T. Characterization of the superoxide dismutase gene and its upstream region from Methanobacterium thermoautotrophicum Marburg. FEMS Microbiol Lett. 1995 May 15;128(3):247–253. doi: 10.1111/j.1574-6968.1995.tb07532.x. [DOI] [PubMed] [Google Scholar]
- Meile L., Stettler R., Banholzer R., Kotik M., Leisinger T. Tryptophan gene cluster of Methanobacterium thermoautotrophicum Marburg: molecular cloning and nucleotide sequence of a putative trpEGCFBAD operon. J Bacteriol. 1991 Aug;173(16):5017–5023. doi: 10.1128/jb.173.16.5017-5023.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell J. B., Samuni A., Krishna M. C., DeGraff W. G., Ahn M. S., Samuni U., Russo A. Biologically active metal-independent superoxide dismutase mimics. Biochemistry. 1990 Mar 20;29(11):2802–2807. doi: 10.1021/bi00463a024. [DOI] [PubMed] [Google Scholar]
- Parker M. W., Blake C. C. Iron- and manganese-containing superoxide dismutases can be distinguished by analysis of their primary structures. FEBS Lett. 1988 Mar 14;229(2):377–382. doi: 10.1016/0014-5793(88)81160-8. [DOI] [PubMed] [Google Scholar]
- Pierik A. J., Wolbert R. B., Portier G. L., Verhagen M. F., Hagen W. R. Nigerythrin and rubrerythrin from Desulfovibrio vulgaris each contain two mononuclear iron centers and two dinuclear iron clusters. Eur J Biochem. 1993 Feb 15;212(1):237–245. doi: 10.1111/j.1432-1033.1993.tb17655.x. [DOI] [PubMed] [Google Scholar]
- Poyart C., Berche P., Trieu-Cuot P. Characterization of superoxide dismutase genes from gram-positive bacteria by polymerase chain reaction using degenerate primers. FEMS Microbiol Lett. 1995 Aug 15;131(1):41–45. doi: 10.1016/0378-1097(95)00232-t. [DOI] [PubMed] [Google Scholar]
- Prickril B. C., Kurtz D. M., Jr, LeGall J., Voordouw G. Cloning and sequencing of the gene for rubrerythrin from Desulfovibrio vulgaris (Hildenborough). Biochemistry. 1991 Nov 19;30(46):11118–11123. doi: 10.1021/bi00110a014. [DOI] [PubMed] [Google Scholar]
- Saikumar P., Swaroop A., Kurup C. K., Ramasarma T. Competing peroxidase and oxidase reactions in scopoletin-dependent H2O2-initiated oxidation of NADH by horseradish peroxidase. Biochim Biophys Acta. 1994 Jan 11;1204(1):117–123. doi: 10.1016/0167-4838(94)90040-x. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shi H., Zhao B., Xin W. Scavenging effects of baicalin on free radicals and its protection on erythrocyte membrane from free radical injury. Biochem Mol Biol Int. 1995 Apr;35(5):981–994. [PubMed] [Google Scholar]
- Van Beeumen J. J., Van Driessche G., Liu M. Y., LeGall J. The primary structure of rubrerythrin, a protein with inorganic pyrophosphatase activity from Desulfovibrio vulgaris. Comparison with hemerythrin and rubredoxin. J Biol Chem. 1991 Nov 5;266(31):20645–20653. [PubMed] [Google Scholar]
- Vaz A. D., Chakraborty S., Massey V. Old Yellow enzyme: aromatization of cyclic enones and the mechanism of a novel dismutation reaction. Biochemistry. 1995 Apr 4;34(13):4246–4256. doi: 10.1021/bi00013a014. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]