Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Dec;178(24):7212–7220. doi: 10.1128/jb.178.24.7212-7220.1996

The NAD(P)H-utilizing glutamate dehydrogenase of Bacteroides thetaiotaomicron belongs to enzyme family I, and its activity is affected by trans-acting gene(s) positioned downstream of gdhA.

L Baggio 1, M Morrison 1
PMCID: PMC178635  PMID: 8955404

Abstract

Previous studies have suggested that regulation of the enzymes of ammonia assimilation in human colonic Bacteroides species is coordinated differently than in other eubacteria. The gene encoding an NAD(P)H-dependent glutamate dehydrogenase (gdhA) in Bacteroides thetaiotaomicron was cloned and expressed in Escherichia coli by mutant complementation from the recombinant plasmid pANS100. Examination of the predicted GdhA amino acid sequence revealed that this enzyme possesses motifs typical of the family I-type hexameric GDH proteins. Northern blot analysis with a gdhA-specific probe indicated that a single transcript with an electrophoretic mobility of approximately 1.6 kb was produced in both B. thetaiotaomicron and E. coli gdhA+ transformants. Although gdhA transcription was unaffected, no GdhA enzyme activity could be detected in E. coli transformants when smaller DNA fragments from pANS100, which contained the entire gdhA gene, were analyzed. Enzyme activity was restored if these E. coli strains were cotransformed with a second plasmid, which contained a 3-kb segment of DNA located downstream of the gdhA coding region. Frameshift mutagenesis within the DNA downstream of gdhA in pANS100 also resulted in the loss of GdhA enzyme activity. Collectively, these results are interpreted as evidence for the role of an additional gene product(s) in modulating the activity of GDH enzyme activity. Insertional mutagenesis experiments which led to disruption of the gdhA gene on the B. thetaiotaomicron chromosome indicated that gdhA mutants were not glutamate auxotrophs, but attempts to isolate similar mutants with insertion mutations in the region downstream of the gdhA gene were unsuccessful.

Full Text

The Full Text of this article is available as a PDF (571.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison M. J., Robinson I. M., Baetz A. L. Synthesis of alpha-ketoglutarate by reductive carboxylation of succinate in Veillonella, Selenomonas, and Bacteriodes species. J Bacteriol. 1979 Dec;140(3):980–986. doi: 10.1128/jb.140.3.980-986.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson K. L., Salyers A. A. Genetic evidence that outer membrane binding of starch is required for starch utilization by Bacteroides thetaiotaomicron. J Bacteriol. 1989 Jun;171(6):3199–3204. doi: 10.1128/jb.171.6.3199-3204.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benachenhou-Lahfa N., Forterre P., Labedan B. Evolution of glutamate dehydrogenase genes: evidence for two paralogous protein families and unusual branching patterns of the archaebacteria in the universal tree of life. J Mol Evol. 1993 Apr;36(4):335–346. doi: 10.1007/BF00182181. [DOI] [PubMed] [Google Scholar]
  4. Berberich M. A. A glutamate-dependent phenotype in E. coli K12: the result of two mutations. Biochem Biophys Res Commun. 1972 Jun 28;47(6):1498–1503. doi: 10.1016/0006-291x(72)90242-2. [DOI] [PubMed] [Google Scholar]
  5. Bernard H. U., Remaut E., Hershfield M. V., Das H. K., Helinski D. R., Yanofsky C., Franklin N. Construction of plasmid cloning vehicles that promote gene expression from the bacteriophage lambda pL promoter. Gene. 1979 Jan;5(1):59–76. doi: 10.1016/0378-1119(79)90092-1. [DOI] [PubMed] [Google Scholar]
  6. Blatch G. L., Woods D. R. Molecular characterization of a fructanase produced by Bacteroides fragilis BF-1. J Bacteriol. 1993 May;175(10):3058–3066. doi: 10.1128/jb.175.10.3058-3066.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brenchley J. E., Prival M. J., Magasanik B. Regulation of the synthesis of enzymes responsible for glutamate formation in Klebsiella aerogenes. J Biol Chem. 1973 Sep 10;248(17):6122–6128. [PubMed] [Google Scholar]
  8. Cheng Q., Salyers A. A. Use of suppressor analysis to find genes involved in the colonization deficiency of a Bacteroides thetaiotaomicron mutant unable to grow on the host-derived mucopolysaccharides chondroitin sulfate and heparin. Appl Environ Microbiol. 1995 Feb;61(2):734–740. doi: 10.1128/aem.61.2.734-740.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Churchward G., Belin D., Nagamine Y. A pSC101-derived plasmid which shows no sequence homology to other commonly used cloning vectors. Gene. 1984 Nov;31(1-3):165–171. doi: 10.1016/0378-1119(84)90207-5. [DOI] [PubMed] [Google Scholar]
  10. Diruggiero J., Robb F. T. Expression and in vitro assembly of recombinant glutamate dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol. 1995 Jan;61(1):159–164. doi: 10.1128/aem.61.1.159-164.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dombrowski K. E., Huang Y. C., Colman R. F. Identification of amino acids modified by the bifunctional affinity label 5'-(p-(fluorosulfonyl)benzoyl)-8-azidoadenosine in the reduced coenzyme regulatory site of bovine liver glutamate dehydrogenase. Biochemistry. 1992 Apr 21;31(15):3785–3793. doi: 10.1021/bi00130a008. [DOI] [PubMed] [Google Scholar]
  12. Gibson S. A., Macfarlane G. T. Studies on the proteolytic activity of Bacteroides fragilis. J Gen Microbiol. 1988 Jan;134(1):19–27. doi: 10.1099/00221287-134-1-19. [DOI] [PubMed] [Google Scholar]
  13. Glass T. L., Hylemon P. B. Characterization of a pyridine nucleotide-nonspecific glutamate dehydrogenase from Bacteroides thetaiotaomicron. J Bacteriol. 1980 Mar;141(3):1320–1330. doi: 10.1128/jb.141.3.1320-1330.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Griffith C. J., Carlsson J. Mechanism of ammonia assimilation in streptococci. J Gen Microbiol. 1974 Jun;82(2):253–260. doi: 10.1099/00221287-82-2-253. [DOI] [PubMed] [Google Scholar]
  15. Helling R. B. Why does Escherichia coli have two primary pathways for synthesis of glutamate? J Bacteriol. 1994 Aug;176(15):4664–4668. doi: 10.1128/jb.176.15.4664-4668.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hill R. T., Parker J. R., Goodman H. J., Jones D. T., Woods D. R. Molecular analysis of a novel glutamine synthetase of the anaerobe Bacteroides fragilis. J Gen Microbiol. 1989 Dec;135(12):3271–3279. doi: 10.1099/00221287-135-12-3271. [DOI] [PubMed] [Google Scholar]
  17. Hwa V., Salyers A. A. Evidence for differential regulation of genes in the chondroitin sulfate utilization pathway of Bacteroides thetaiotaomicron. J Bacteriol. 1992 Jan;174(1):342–344. doi: 10.1128/jb.174.1.342-344.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Macaluso A., Best E. A., Bender R. A. Role of the nac gene product in the nitrogen regulation of some NTR-regulated operons of Klebsiella aerogenes. J Bacteriol. 1990 Dec;172(12):7249–7255. doi: 10.1128/jb.172.12.7249-7255.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miller T. L., Wolin M. J. Fermentations by saccharolytic intestinal bacteria. Am J Clin Nutr. 1979 Jan;32(1):164–172. doi: 10.1093/ajcn/32.1.164. [DOI] [PubMed] [Google Scholar]
  22. Rogers M. B., Bennett T. K., Payne C. M., Smith C. J. Insertional activation of cepA leads to high-level beta-lactamase expression in Bacteroides fragilis clinical isolates. J Bacteriol. 1994 Jul;176(14):4376–4384. doi: 10.1128/jb.176.14.4376-4384.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Salyers A. A., O'Brien M. Cellular location of enzymes involved in chondroitin sulfate breakdown by Bacteroides thetaiotaomicron. J Bacteriol. 1980 Aug;143(2):772–780. doi: 10.1128/jb.143.2.772-780.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Salyers A. A., Pajeau M., McCarthy R. E. Importance of mucopolysaccharides as substrates for Bacteroides thetaiotaomicron growing in intestinal tracts of exgermfree mice. Appl Environ Microbiol. 1988 Aug;54(8):1970–1976. doi: 10.1128/aem.54.8.1970-1976.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Salyers A. A., Shoemaker N. B., Guthrie E. P. Recent advances in Bacteroides genetics. Crit Rev Microbiol. 1987;14(1):49–71. doi: 10.3109/10408418709104435. [DOI] [PubMed] [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schwacha A., Bender R. A. The product of the Klebsiella aerogenes nac (nitrogen assimilation control) gene is sufficient for activation of the hut operons and repression of the gdh operon. J Bacteriol. 1993 Apr;175(7):2116–2124. doi: 10.1128/jb.175.7.2116-2124.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shoemaker N. B., Getty C., Guthrie E. P., Salyers A. A. Regions in Bacteroides plasmids pBFTM10 and pB8-51 that allow Escherichia coli-Bacteroides shuttle vectors to be mobilized by IncP plasmids and by a conjugative Bacteroides tetracycline resistance element. J Bacteriol. 1986 Jun;166(3):959–965. doi: 10.1128/jb.166.3.959-965.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Shoemaker N. B., Wang G. R., Salyers A. A. Evidence for natural transfer of a tetracycline resistance gene between bacteria from the human colon and bacteria from the bovine rumen. Appl Environ Microbiol. 1992 Apr;58(4):1313–1320. doi: 10.1128/aem.58.4.1313-1320.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Southern J. A., Parker J. R., Woods D. R. Expression and purification of glutamine synthetase cloned from Bacteroides fragilis. J Gen Microbiol. 1986 Oct;132(10):2827–2835. doi: 10.1099/00221287-132-10-2827. [DOI] [PubMed] [Google Scholar]
  31. Stevens A. M., Sanders J. M., Shoemaker N. B., Salyers A. A. Genes involved in production of plasmidlike forms by a Bacteroides conjugal chromosomal element share amino acid homology with two-component regulatory systems. J Bacteriol. 1992 May;174(9):2935–2942. doi: 10.1128/jb.174.9.2935-2942.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Teller J. K., Smith R. J., McPherson M. J., Engel P. C., Guest J. R. The glutamate dehydrogenase gene of Clostridium symbiosum. Cloning by polymerase chain reaction, sequence analysis and over-expression in Escherichia coli. Eur J Biochem. 1992 May 15;206(1):151–159. doi: 10.1111/j.1432-1033.1992.tb16912.x. [DOI] [PubMed] [Google Scholar]
  33. Valentine P. J., Shoemaker N. B., Salyers A. A. Mobilization of Bacteroides plasmids by Bacteroides conjugal elements. J Bacteriol. 1988 Mar;170(3):1319–1324. doi: 10.1128/jb.170.3.1319-1324.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Varel V. H., Bryant M. P. Nutritional features of Bacteroides fragilis subsp. fragilis. Appl Microbiol. 1974 Aug;28(2):251–257. doi: 10.1128/am.28.2.251-257.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Weisburg W. G., Oyaizu Y., Oyaizu H., Woese C. R. Natural relationship between bacteroides and flavobacteria. J Bacteriol. 1985 Oct;164(1):230–236. doi: 10.1128/jb.164.1.230-236.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wen Z., Morrison M. The NAD(P)H-dependent glutamate dehydrogenase activities of Prevotella ruminicola B(1)4 can be attributed to one enzyme (GdhA), and gdhA expression is regulated in response to the nitrogen source available for growth. Appl Environ Microbiol. 1996 Oct;62(10):3826–3833. doi: 10.1128/aem.62.10.3826-3833.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wilson A. C., Carlson S. S., White T. J. Biochemical evolution. Annu Rev Biochem. 1977;46:573–639. doi: 10.1146/annurev.bi.46.070177.003041. [DOI] [PubMed] [Google Scholar]
  38. Yamamoto I., Abe A., Ishimoto M. Properties of glutamate dehydrogenase purified from Bacteroides fragilis. J Biochem. 1987 Jun;101(6):1391–1397. doi: 10.1093/oxfordjournals.jbchem.a122008. [DOI] [PubMed] [Google Scholar]
  39. Yamamoto I., Saito H., Ishimoto M. Regulation of synthesis and reversible inactivation in vivo of dual coenzyme-specific glutamate dehydrogenase in Bacteroides fragilis. J Gen Microbiol. 1987 Oct;133(10):2773–2780. doi: 10.1099/00221287-133-10-2773. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES