Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Dec;178(24):7308–7310. doi: 10.1128/jb.178.24.7308-7310.1996

The bluF gene of Rhodobacter capsulatus is involved in conversion of cobinamide to cobalamin (vitamin B12).

M Pollich 1, C Wersig 1, G Klug 1
PMCID: PMC178648  PMID: 8955417

Abstract

The bluF gene of Rhodobacter capsulatus is the first gene of the bluFEDCB operon which is involved in late steps of the cobalamin synthesis. To determine the function of the bluF gene product, a bluF::omega-Km mutant strain was constructed and characterized. This vitamin B12 auxotrophic mutant strain shows a 3.5-times higher vitamin B12 requirement under phototrophic growth conditions than under chemotrophic growth conditions. Surprisingly, the bluF promoter activity does not respond to alterations to the oxygen tension or vitamin B12 concentration.

Full Text

The Full Text of this article is available as a PDF (194.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bollivar D. W., Jiang Z. Y., Bauer C. E., Beale S. I. Heterologous expression of the bchM gene product from Rhodobacter capsulatus and demonstration that it encodes S-adenosyl-L-methionine:Mg-protoporphyrin IX methyltransferase. J Bacteriol. 1994 Sep;176(17):5290–5296. doi: 10.1128/jb.176.17.5290-5296.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cauthen S. E., Pattison J. R., Lascelles J. Vitamin B(12) in photosynthetic bacteria and methionine synthesis by Rhodopseudomonas spheroides. Biochem J. 1967 Mar;102(3):774–781. doi: 10.1042/bj1020774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fellay R., Frey J., Krisch H. Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria. Gene. 1987;52(2-3):147–154. doi: 10.1016/0378-1119(87)90041-2. [DOI] [PubMed] [Google Scholar]
  4. Gorchein A. Magnesium protoporphyrin chelatase activity in Rhodopseudomonas spheroides. Studies with whole cells. Biochem J. 1972 Mar;127(1):97–106. doi: 10.1042/bj1270097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hübner P., Masepohl B., Klipp W., Bickle T. A. nif gene expression studies in Rhodobacter capsulatus: ntrC-independent repression by high ammonium concentrations. Mol Microbiol. 1993 Oct;10(1):123–132. doi: 10.1111/j.1365-2958.1993.tb00909.x. [DOI] [PubMed] [Google Scholar]
  6. Pollich M., Klug G. Identification and sequence analysis of genes involved in late steps in cobalamin (vitamin B12) synthesis in Rhodobacter capsulatus. J Bacteriol. 1995 Aug;177(15):4481–4487. doi: 10.1128/jb.177.15.4481-4487.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Scolnik P. A., Walker M. A., Marrs B. L. Biosynthesis of carotenoids derived from neurosporene in Rhodopseudomonas capsulata. J Biol Chem. 1980 Mar 25;255(6):2427–2432. [PubMed] [Google Scholar]
  8. Singh R. K., Britton G., Goodwin T. W. Carotenoid biosynthesis in Rhodopseudomonas spheroides. S-adenosylmethionine as the methylating agent in the biosynthesis of spheroidene and spheroidenone. Biochem J. 1973 Oct;136(2):413–419. doi: 10.1042/bj1360413. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES