Abstract
We have examined the metabolic consequences of knocking out the two ldh genes in Lactobacillus plantarum using 13C nuclear magnetic resonance. Unlike its wild-type isogenic progenitor, which produced lactate as the major metabolite under all conditions tested, ldh null strain TF103 mainly produced acetoin. A variety of secondary end products were also found, including organic acids (acetate, succinate, pyruvate, and lactate), ethanol, 2,3-butanediol, and mannitol.
Full Text
The Full Text of this article is available as a PDF (201.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernard N., Johnsen K., Ferain T., Garmyn D., Hols P., Holbrook J. J., Delcour J. NAD(+)-dependent D-2-hydroxyisocaproate dehydrogenase of Lactobacillus delbrueckii subsp. bulgaricus. Gene cloning and enzyme characterization. Eur J Biochem. 1994 Sep 1;224(2):439–446. doi: 10.1111/j.1432-1033.1994.00439.x. [DOI] [PubMed] [Google Scholar]
- Caspritz G., Radler F. Malolactic enzyme of Lactobacillus plantarum. Purification, properties, and distribution among bacteria. J Biol Chem. 1983 Apr 25;258(8):4907–4910. [PubMed] [Google Scholar]
- Cavin J. F., Prevost H., Lin J., Schmitt P., Divies C. Medium for Screening Leuconostoc oenos Strains Defective in Malolactic Fermentation. Appl Environ Microbiol. 1989 Mar;55(3):751–753. doi: 10.1128/aem.55.3.751-753.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chakravorty M. Metabolism of mannitol and induction of mannitol 1-phosphate dehydrogenase in Lactobacillus plantarum. J Bacteriol. 1964 May;87(5):1246–1248. doi: 10.1128/jb.87.5.1246-1248.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charnock C., Refseth U. H., Sirevåg R. Malate dehydrogenase from Chlorobium vibrioforme, Chlorobium tepidum, and Heliobacterium gestii: purification, characterization, and investigation of dinucleotide binding by dehydrogenases by use of empirical methods of protein sequence analysis. J Bacteriol. 1992 Feb;174(4):1307–1313. doi: 10.1128/jb.174.4.1307-1313.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaumont F., Schanck A. N., Blum J. J., Opperdoes F. R. Aerobic and anaerobic glucose metabolism of Phytomonas sp. isolated from Euphorbia characias. Mol Biochem Parasitol. 1994 Oct;67(2):321–331. doi: 10.1016/0166-6851(94)00141-3. [DOI] [PubMed] [Google Scholar]
- Ferain T., Garmyn D., Bernard N., Hols P., Delcour J. Lactobacillus plantarum ldhL gene: overexpression and deletion. J Bacteriol. 1994 Feb;176(3):596–601. doi: 10.1128/jb.176.3.596-601.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferain T., Hobbs J. N., Jr, Richardson J., Bernard N., Garmyn D., Hols P., Allen N. E., Delcour J. Knockout of the two ldh genes has a major impact on peptidoglycan precursor synthesis in Lactobacillus plantarum. J Bacteriol. 1996 Sep;178(18):5431–5437. doi: 10.1128/jb.178.18.5431-5437.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Götz F., Sedewitz B., Elstner E. F. Oxygen utilization by Lactobacillus plantarum. I. Oxygen consuming reactions. Arch Microbiol. 1980 Apr;125(3):209–214. doi: 10.1007/BF00446878. [DOI] [PubMed] [Google Scholar]
- Hickey M. W., Hillier A. J., Jago G. R. Metabolism of pyruvate and citrate in lactobacilli. Aust J Biol Sci. 1983;36(5-6):487–496. doi: 10.1071/bi9830487. [DOI] [PubMed] [Google Scholar]
- Hummel W., Kula M. R. Dehydrogenases for the synthesis of chiral compounds. Eur J Biochem. 1989 Sep 1;184(1):1–13. doi: 10.1111/j.1432-1033.1989.tb14983.x. [DOI] [PubMed] [Google Scholar]
- Kaneuchi C., Seki M., Komagata K. Production of succinic Acid from citric Acid and related acids by lactobacillus strains. Appl Environ Microbiol. 1988 Dec;54(12):3053–3056. doi: 10.1128/aem.54.12.3053-3056.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Labarre C., Guzzo J., Cavin J. F., Diviès C. Cloning and characterization of the genes encoding the malolactic enzyme and the malate permease of Leuconostoc oenos. Appl Environ Microbiol. 1996 Apr;62(4):1274–1282. doi: 10.1128/aem.62.4.1274-1282.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lerch H. P., Blöcker H., Kallwass H., Hoppe J., Tsai H., Collins J. Cloning, sequencing and expression in Escherichia coli of the D-2-hydroxyisocaproate dehydrogenase gene of Lactobacillus casei. Gene. 1989 May 15;78(1):47–57. doi: 10.1016/0378-1119(89)90313-2. [DOI] [PubMed] [Google Scholar]
- Lerch H. P., Frank R., Collins J. Cloning, sequencing and expression of the L-2-hydroxyisocaproate dehydrogenase-encoding gene of Lactobacillus confusus in Escherichia coli. Gene. 1989 Nov 30;83(2):263–270. doi: 10.1016/0378-1119(89)90112-1. [DOI] [PubMed] [Google Scholar]
- Loesche W. J., Kornman K. S. Production of mannitol by Streptococcus mutans. Arch Oral Biol. 1976;21(9):551–553. doi: 10.1016/0003-9969(76)90021-2. [DOI] [PubMed] [Google Scholar]
- Modak H. V., Kelly D. J. Acetyl-CoA-dependent pyruvate carboxylase from the photosynthetic bacterium Rhodobacter capsulatus: rapid and efficient purification using dye-ligand affinity chromatography. Microbiology. 1995 Oct;141(Pt 10):2619–2628. doi: 10.1099/13500872-141-10-2619. [DOI] [PubMed] [Google Scholar]
- Montville T. J., Hsu A. H., Meyer M. E. High-Efficiency Conversion of Pyruvate to Acetoin by Lactobacillus plantarum during pH-Controlled and Fed-Batch Fermentations. Appl Environ Microbiol. 1987 Aug;53(8):1798–1802. doi: 10.1128/aem.53.8.1798-1802.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy M. G., Condon S. Correlation of oxygen utilization and hydrogen peroxide accumulation with oxygen induced enzymes in Lactobacillus plantarum cultures. Arch Microbiol. 1984 May;138(1):44–48. doi: 10.1007/BF00425405. [DOI] [PubMed] [Google Scholar]
- Sedewitz B., Schleifer K. H., Götz F. Physiological role of pyruvate oxidase in the aerobic metabolism of Lactobacillus plantarum. J Bacteriol. 1984 Oct;160(1):462–465. doi: 10.1128/jb.160.1.462-465.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sedewitz B., Schleifer K. H., Götz F. Purification and biochemical characterization of pyruvate oxidase from Lactobacillus plantarum. J Bacteriol. 1984 Oct;160(1):273–278. doi: 10.1128/jb.160.1.273-278.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Starrenburg M. J., Hugenholtz J. Citrate Fermentation by Lactococcus and Leuconostoc spp. Appl Environ Microbiol. 1991 Dec;57(12):3535–3540. doi: 10.1128/aem.57.12.3535-3540.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsau J. L., Guffanti A. A., Montville T. J. Conversion of Pyruvate to Acetoin Helps To Maintain pH Homeostasis in Lactobacillus plantarum. Appl Environ Microbiol. 1992 Mar;58(3):891–894. doi: 10.1128/aem.58.3.891-894.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tseng C. P., Montville T. J. Enzyme Activities Affecting End Product Distribution by Lactobacillus plantarum in Response to Changes in pH and O(2). Appl Environ Microbiol. 1990 Sep;56(9):2761–2763. doi: 10.1128/aem.56.9.2761-2763.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
