Abstract
Rhodobacter sphaeroides responds to a decrease in light intensity by a transient stop followed by adaptation. There is no measurable response to increases in light intensity. We confirmed that photosynthetic electron transport is essential for a photoresponse, as (i) inhibitors of photosynthetic electron transport inhibit photoresponses, (ii) electron transport to oxidases in the presence of oxygen reduces the photoresponse, and (iii) the magnitude of the response is dependent on the photopigment content of the cells. The photoresponses of cells grown in high light, which have lower concentrations of light-harvesting photopigment and reaction centers, saturated at much higher light intensities than the photoresponses of cells grown in low light, which have high concentrations of light-harvesting pigments and reaction centers. We examined whether the primary sensory signal from the photosynthetic electron transport chain was a change in the electrochemical proton gradient or a change in the rate of electron transport itself (probably reflecting redox sensing). R. sphaeroides showed no response to the addition of the proton ionophore carbonyl cyanide 4-trifluoromethoxyphenylhydrazone, which decreased the electrochemical proton gradient, although a behavioral response was seen to a reduction in light intensity that caused an equivalent reduction in proton gradient. These results strongly suggest that (i) the photosynthetic apparatus is the primary photoreceptor, (ii) the primary signal is generated by a change in the rate of electron transport, (iii) the change in the electrochemical proton gradient is not the primary photosensory signal, and (iv) stimuli affecting electron transport rates integrate via the electron transport chain.
Full Text
The Full Text of this article is available as a PDF (236.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armitage J. P. Behavioral responses in bacteria. Annu Rev Physiol. 1992;54:683–714. doi: 10.1146/annurev.ph.54.030192.003343. [DOI] [PubMed] [Google Scholar]
- Armitage J. P., Ingham C., Evans M. C. Role of proton motive force in phototactic and aerotactic responses of Rhodopseudomonas sphaeroides. J Bacteriol. 1985 Mar;161(3):967–972. doi: 10.1128/jb.161.3.967-972.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armitage J. P., Macnab R. M. Unidirectional, intermittent rotation of the flagellum of Rhodobacter sphaeroides. J Bacteriol. 1987 Feb;169(2):514–518. doi: 10.1128/jb.169.2.514-518.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berg H. C., Block S. M. A miniature flow cell designed for rapid exchange of media under high-power microscope objectives. J Gen Microbiol. 1984 Nov;130(11):2915–2920. doi: 10.1099/00221287-130-11-2915. [DOI] [PubMed] [Google Scholar]
- Bibikov S. I., Bloch D. A., Cherepanov D. A., Oesterhelt D., Semenov AYu Flash-induced electrogenic reactions in the SA(L223) reaction center mutant in Rhodobacter sphaeroides chromatophores. FEBS Lett. 1994 Mar 14;341(1):10–14. doi: 10.1016/0014-5793(94)80230-0. [DOI] [PubMed] [Google Scholar]
- CLAYTON R. K. Studies in the phototaxis of Rhodospirillum rubrum. I. Action spectrum, growth in green light, and Weber law adherence. Arch Mikrobiol. 1953;19(2):107–124. doi: 10.1007/BF00446395. [DOI] [PubMed] [Google Scholar]
- Eisenbach M. Control of bacterial chemotaxis. Mol Microbiol. 1996 Jun;20(5):903–910. doi: 10.1111/j.1365-2958.1996.tb02531.x. [DOI] [PubMed] [Google Scholar]
- Gauden D. E., Armitage J. P. Electron transport-dependent taxis in Rhodobacter sphaeroides. J Bacteriol. 1995 Oct;177(20):5853–5859. doi: 10.1128/jb.177.20.5853-5859.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gegner J. A., Graham D. R., Roth A. F., Dahlquist F. W. Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell. 1992 Sep 18;70(6):975–982. doi: 10.1016/0092-8674(92)90247-a. [DOI] [PubMed] [Google Scholar]
- Glagolev A. N. Reception of the energy level in bacterial taxis. J Theor Biol. 1980 Jan 21;82(2):171–185. doi: 10.1016/0022-5193(80)90097-1. [DOI] [PubMed] [Google Scholar]
- Grishanin R. N., Bibikov S. I., Altschuler I. M., Kaulen A. D., Kazimirchuk S. B., Armitage J. P., Skulachev V. P. delta psi-mediated signalling in the bacteriorhodopsin-dependent photoresponse. J Bacteriol. 1996 Jun;178(11):3008–3014. doi: 10.1128/jb.178.11.3008-3014.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison D. M., Packer H. L., Armitage J. P. Swimming speed and chemokinetic response of Rhodobacter sphaeroides investigated by natural manipulation of the membrane potential. FEBS Lett. 1994 Jul 4;348(1):37–40. doi: 10.1016/0014-5793(94)00572-9. [DOI] [PubMed] [Google Scholar]
- Häder D. P. Photosensory behavior in procaryotes. Microbiol Rev. 1987 Mar;51(1):1–21. doi: 10.1128/mr.51.1.1-21.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson J. B., Crofts A. R. The high energy state in chromatophores from Rhodopseudomonas spheroides. FEBS Lett. 1969 Aug;4(3):185–189. doi: 10.1016/0014-5793(69)80230-9. [DOI] [PubMed] [Google Scholar]
- Packer H. L., Gauden D. E., Armitage J. P. The behavioural response of anaerobic Rhodobacter sphaeroides to temporal stimuli. Microbiology. 1996 Mar;142(Pt 3):593–599. doi: 10.1099/13500872-142-3-593. [DOI] [PubMed] [Google Scholar]
- Packer H. L., Harrison D. M., Dixon R. M., Armitage J. P. The effect of pH on the growth and motility of Rhodobacter sphaeroides WS8 and the nature of the driving force of the flagellar motor. Biochim Biophys Acta. 1994 Nov 1;1188(1-2):101–107. doi: 10.1016/0005-2728(94)90027-2. [DOI] [PubMed] [Google Scholar]
- Poole P. S., Sinclair D. R., Armitage J. P. Real time computer tracking of free-swimming and tethered rotating cells. Anal Biochem. 1988 Nov 15;175(1):52–58. doi: 10.1016/0003-2697(88)90359-4. [DOI] [PubMed] [Google Scholar]
- Segall J. E., Manson M. D., Berg H. C. Signal processing times in bacterial chemotaxis. Nature. 1982 Apr 29;296(5860):855–857. doi: 10.1038/296855a0. [DOI] [PubMed] [Google Scholar]
- Shioi J., Tribhuwan R. C., Berg S. T., Taylor B. L. Signal transduction in chemotaxis to oxygen in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1988 Dec;170(12):5507–5511. doi: 10.1128/jb.170.12.5507-5511.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spudich J. L. Color sensing in the Archaea: a eukaryotic-like receptor coupled to a prokaryotic transducer. J Bacteriol. 1993 Dec;175(24):7755–7761. doi: 10.1128/jb.175.24.7755-7761.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor B. L. Role of proton motive force in sensory transduction in bacteria. Annu Rev Microbiol. 1983;37:551–573. doi: 10.1146/annurev.mi.37.100183.003003. [DOI] [PubMed] [Google Scholar]
- Weaver P. Temperature-sensitive mutations of the photosynthetic apparatus of Rhodospirillum rubrum. Proc Natl Acad Sci U S A. 1971 Jan;68(1):136–138. doi: 10.1073/pnas.68.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wraight C. A., Lueking D. R., Fraley R. T., Kaplan S. Synthesis of photopigments and electron transport components in synchronous phototrophic cultures of Rhodopseudomonas sphaeroides. J Biol Chem. 1978 Jan 25;253(2):465–471. [PubMed] [Google Scholar]
- Zeilstra-Ryalls J. H., Kaplan S. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: regulation through alterations in the cellular redox state. J Bacteriol. 1996 Feb;178(4):985–993. doi: 10.1128/jb.178.4.985-993.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]