Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jan;179(1):31–40. doi: 10.1128/jb.179.1.31-40.1997

Metal selectivity of in situ microcolonies in biofilms of the Elbe river.

H Lünsdorf 1, I Brümmer 1, K N Timmis 1, I Wagner-Döbler 1
PMCID: PMC178658  PMID: 8981977

Abstract

The ultrastructure of natural complex biofilm communities of the Elbe river grown in situ on microscopic glass coverslips was studied by using transmission electron microscopy and energy-dispersive x-ray (EDX) analysis. Characteristic microcolonies which measured between 3.3 and 9.3 microm in diameter were frequently observed. They had an outer envelope and harbored 6 to 30 cells. The cells formed short rods measuring 1.09 +/- 0.28 microm (n = 10) in length and 0.55 + 0.07 microm (n = 21) in width. They were surrounded by a thick layer of electron-transparent, nonosmicated matter, 120 to 300 nm thick. Individual cells exhibited a unique ultrastructural trait, namely, a concentric membrane stack which completely surrounded the cytoplasm. It consisted of three membrane doublets, which showed an overall thickness of 57 to 66 nm. The center-to-center spacing between two membrane doublets was 22.2 +/- 1.0 nm (n = 12). The bacterial cell wall seemed to be of the gram-negative type. The fact that upon shrinkage hexagonal clefts appeared proved the cells to be tightly packed, and septum formation by binary fissions was observed. All of these morphological details indicate that the cells within these microcolonies were actively growing and did not represent spore-like states. EDX analysis showed that only the electron-dense surface deposit of the microcolonies contained Mn and Fe in significant amounts, while these two elements were absent from the intercellular space and the cytoplasm of the microorganisms. In contrast, aluminum ions were able to penetrate the outer envelope of the microcolonies and were detected in the intercellular space. They were, however, completely absent from the microbial cytoplasm, indicating a filter cascade with respect to aluminum. From the ultrastructural data together with the deposition of iron and manganese on the microcolony surface, it appears that these organisms may belong to the genus Siderocapsa or Nitrosomonas. They do not precisely match any of the described species and may therefore represent a new species.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams L. F., Ghiorse W. C. Characterization of extracellular Mn2+-oxidizing activity and isolation of an Mn2+-oxidizing protein from Leptothrix discophora SS-1. J Bacteriol. 1987 Mar;169(3):1279–1285. doi: 10.1128/jb.169.3.1279-1285.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown D. A., Kamineni D. C., Sawicki J. A., Beveridge T. J. Minerals associated with biofilms occurring on exposed rock in a granitic underground research laboratory. Appl Environ Microbiol. 1994 Sep;60(9):3182–3191. doi: 10.1128/aem.60.9.3182-3191.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Corstjens P. L., de Vrind J. P., Westbroek P., de Vrind-de Jong E. W. Enzymatic iron oxidation by Leptothrix discophora: identification of an iron-oxidizing protein. Appl Environ Microbiol. 1992 Feb;58(2):450–454. doi: 10.1128/aem.58.2.450-454.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cronan C. S., Schofield C. L. Aluminum leaching response to Acid precipitation: effects on high-elevation watersheds in the northeast. Science. 1979 Apr 20;204(4390):304–306. doi: 10.1126/science.204.4390.304. [DOI] [PubMed] [Google Scholar]
  5. Davis W. B., Byers B. R. Active transport of iron in Bacillus megaterium: role of secondary hydroxamic acids. J Bacteriol. 1971 Aug;107(2):491–498. doi: 10.1128/jb.107.2.491-498.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ferris F. G., Schultze S., Witten T. C., Fyfe W. S., Beveridge T. J. Metal Interactions with Microbial Biofilms in Acidic and Neutral pH Environments. Appl Environ Microbiol. 1989 May;55(5):1249–1257. doi: 10.1128/aem.55.5.1249-1257.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Flessel C. P. Metals as mutagens. Adv Exp Med Biol. 1977;91:117–128. doi: 10.1007/978-1-4684-0796-9_9. [DOI] [PubMed] [Google Scholar]
  8. Ganrot P. O. Metabolism and possible health effects of aluminum. Environ Health Perspect. 1986 Mar;65:363–441. doi: 10.1289/ehp.8665363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ghiorse W. C. Biology of iron- and manganese-depositing bacteria. Annu Rev Microbiol. 1984;38:515–550. doi: 10.1146/annurev.mi.38.100184.002503. [DOI] [PubMed] [Google Scholar]
  10. Gounot A. M. Microbial oxidation and reduction of manganese: consequences in groundwater and applications. FEMS Microbiol Rev. 1994 Aug;14(4):339–349. doi: 10.1111/j.1574-6976.1994.tb00108.x. [DOI] [PubMed] [Google Scholar]
  11. Hoenen K., Schwartz W. Nachweis von Siderocapsaceen am natürlichen Standort. Z Allg Mikrobiol. 1975;15(8):639–643. [PubMed] [Google Scholar]
  12. Hooper R. P., Shoemaker C. A. Aluminum mobilization in an acidic headwater stream: temporal variation and mineral dissolution disequilibria. Science. 1985 Aug 2;229(4712):463–465. doi: 10.1126/science.229.4712.463. [DOI] [PubMed] [Google Scholar]
  13. Jung W. K., Schweisfurth R. Manganese oxidation by an intracellular protein of a Pseudomonas species. Z Allg Mikrobiol. 1979;19(2):107–115. [PubMed] [Google Scholar]
  14. Konhauser K. O., Schultze-Lam S., Ferris F. G., Fyfe W. S., Longstaffe F. J., Beveridge T. J. Mineral precipitation by epilithic biofilms in the speed river, ontario, Canada. Appl Environ Microbiol. 1994 Feb;60(2):549–553. doi: 10.1128/aem.60.2.549-553.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Macdonald T. L., Humphreys W. G., Martin R. B. Promotion of tubulin assembly by aluminum ion in vitro. Science. 1987 Apr 10;236(4798):183–186. doi: 10.1126/science.3105058. [DOI] [PubMed] [Google Scholar]
  16. Macdonald T. L., Martin R. B. Aluminum ion in biological systems. Trends Biochem Sci. 1988 Jan;13(1):15–19. doi: 10.1016/0968-0004(88)90012-6. [DOI] [PubMed] [Google Scholar]
  17. Martin R. B. The chemistry of aluminum as related to biology and medicine. Clin Chem. 1986 Oct;32(10):1797–1806. [PubMed] [Google Scholar]
  18. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Roy A. K., Sharma A., Talukder G. A time-course study on effects of aluminium on mitotic cell division in Allium sativum. Mutat Res. 1989 Dec;227(4):221–226. doi: 10.1016/0165-7992(89)90100-0. [DOI] [PubMed] [Google Scholar]
  20. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  21. Vierstra R., Haug A. The effect of A13+ on the physical properties of membrane lipids in Thermoplasma acidophilum. Biochem Biophys Res Commun. 1978 Sep 14;84(1):138–143. doi: 10.1016/0006-291x(78)90274-7. [DOI] [PubMed] [Google Scholar]
  22. Völker H., Schweisfurth R., Hirsch P. Morphology and ultrastructure of Crenothrix polyspora Cohn. J Bacteriol. 1977 Jul;131(1):306–313. doi: 10.1128/jb.131.1.306-313.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. van Ginkel M. F., van der Voet G. B., van Eijk H. G., de Wolff F. A. Aluminium binding to serum constituents: a role for transferrin and for citrate. J Clin Chem Clin Biochem. 1990 Jul;28(7):459–463. doi: 10.1515/cclm.1990.28.7.459. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES