Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jan;179(1):46–52. doi: 10.1128/jb.179.1.46-52.1997

The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form.

C Reverbel-Leroy 1, S Pages 1, A Belaich 1, J P Belaich 1, C Tardif 1
PMCID: PMC178660  PMID: 8981979

Abstract

The recombinant form of the cellulase CelF of Clostridium cellulolyticum, tagged by a C-terminal histine tail, was overproduced in Escherichia coli. The fusion protein was purified by affinity chromatography on a Ni-nitrilotriacetic acid column. The intact form of CelF (Mr, 79,000) was rapidly degraded at the C terminus, giving a shorter stable form, called truncated CelF (Mr, 71,000). Both the entire and the truncated purified forms degraded amorphous cellulose (kcat = 42 and 30 min(-1), respectively) and microcrystalline cellulose (kcat = 13 and 10 min(-1), respectively). The high ratio of soluble reducing ends to insoluble reducing ends released by truncated CelF from amorphous cellulose showed that CelF is a processive enzyme. Nevertheless, the diversity of the cellodextrins released by truncated CelF from phosphoric acid-swollen cellulose at the beginning of the reaction indicated that the enzyme might randomly hydrolyze beta-1,4 bonds. This hypothesis was supported by viscosimetric measurements and by the finding that CelF and the endoglucanase CelA are able to degrade some of the same cellulose sites. CelF was therefore called a processive endocellulase. The results of immunoblotting analysis showed that CelF was associated with the cellulosome of C. cellulolyticum. It was identified as one of the three major components of cellulosomes. The ability of the entire form of CelF to interact with CipC, the cellulosome integrating protein, or mini-CipC1, a recombinant truncated form of CipC, was monitored by interaction Western blotting (immunoblotting) and by binding assays using a BIAcore biosensor-based analytical system.

Full Text

The Full Text of this article is available as a PDF (247.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagnara-Tardif C., Gaudin C., Belaich A., Hoest P., Citard T., Belaich J. P. Sequence analysis of a gene cluster encoding cellulases from Clostridium cellulolyticum. Gene. 1992 Sep 21;119(1):17–28. doi: 10.1016/0378-1119(92)90062-t. [DOI] [PubMed] [Google Scholar]
  2. Barr B. K., Hsieh Y. L., Ganem B., Wilson D. B. Identification of two functionally different classes of exocellulases. Biochemistry. 1996 Jan 16;35(2):586–592. doi: 10.1021/bi9520388. [DOI] [PubMed] [Google Scholar]
  3. Bayer E. A., Morag E., Lamed R. The cellulosome--a treasure-trove for biotechnology. Trends Biotechnol. 1994 Sep;12(9):379–386. doi: 10.1016/0167-7799(94)90039-6. [DOI] [PubMed] [Google Scholar]
  4. Bronnenmeier K., Rücknagel K. P., Staudenbauer W. L. Purification and properties of a novel type of exo-1,4-beta-glucanase (avicelase II) from the cellulolytic thermophile Clostridium stercorarium. Eur J Biochem. 1991 Sep 1;200(2):379–385. doi: 10.1111/j.1432-1033.1991.tb16195.x. [DOI] [PubMed] [Google Scholar]
  5. Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995 Sep 15;3(9):853–859. doi: 10.1016/S0969-2126(01)00220-9. [DOI] [PubMed] [Google Scholar]
  6. Ducros V., Czjzek M., Belaich A., Gaudin C., Fierobe H. P., Belaich J. P., Davies G. J., Haser R. Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Structure. 1995 Sep 15;3(9):939–949. doi: 10.1016/S0969-2126(01)00228-3. [DOI] [PubMed] [Google Scholar]
  7. Ey P. L., Prowse S. J., Jenkin C. R. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978 Jul;15(7):429–436. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
  8. Faure E., Belaich A., Bagnara C., Gaudin C., Belaich J. P. Sequence analysis of the Clostridium cellulolyticum endoglucanase-A-encoding gene, celCCA. Gene. 1989 Dec 7;84(1):39–46. doi: 10.1016/0378-1119(89)90137-6. [DOI] [PubMed] [Google Scholar]
  9. Fierobe H. P., Bagnara-Tardif C., Gaudin C., Guerlesquin F., Sauve P., Belaich A., Belaich J. P. Purification and characterization of endoglucanase C from Clostridium cellulolyticum. Catalytic comparison with endoglucanase A. Eur J Biochem. 1993 Oct 15;217(2):557–565. doi: 10.1111/j.1432-1033.1993.tb18277.x. [DOI] [PubMed] [Google Scholar]
  10. Fierobe H. P., Gaudin C., Belaich A., Loutfi M., Faure E., Bagnara C., Baty D., Belaich J. P. Characterization of endoglucanase A from Clostridium cellulolyticum. J Bacteriol. 1991 Dec;173(24):7956–7962. doi: 10.1128/jb.173.24.7956-7962.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Giallo J., Gaudin C., Belaich J. P., Petitdemange E., Caillet-Mangin F. Metabolism of glucose and cellobiose by cellulolytic mesophilic Clostridium sp. strain H10. Appl Environ Microbiol. 1983 Mar;45(3):843–849. doi: 10.1128/aem.45.3.843-849.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kruus K., Wang W. K., Ching J., Wu J. H. Exoglucanase activities of the recombinant Clostridium thermocellum CelS, a major cellulosome component. J Bacteriol. 1995 Mar;177(6):1641–1644. doi: 10.1128/jb.177.6.1641-1644.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Morag E., Bayer E. A., Hazlewood G. P., Gilbert H. J., Lamed R. Cellulase Ss (CelS) is synonymous with the major cellobiohydrolase (subunit S8) from the cellulosome of Clostridium thermocellum. Appl Biochem Biotechnol. 1993 Nov;43(2):147–151. doi: 10.1007/BF02916439. [DOI] [PubMed] [Google Scholar]
  16. Morag E., Halevy I., Bayer E. A., Lamed R. Isolation and properties of a major cellobiohydrolase from the cellulosome of Clostridium thermocellum. J Bacteriol. 1991 Jul;173(13):4155–4162. doi: 10.1128/jb.173.13.4155-4162.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. PARK J. T., JOHNSON M. J. A submicrodetermination of glucose. J Biol Chem. 1949 Nov;181(1):149–151. [PubMed] [Google Scholar]
  18. Pagès S., Belaich A., Tardif C., Reverbel-Leroy C., Gaudin C., Belaich J. P. Interaction between the endoglucanase CelA and the scaffolding protein CipC of the Clostridium cellulolyticum cellulosome. J Bacteriol. 1996 Apr;178(8):2279–2286. doi: 10.1128/jb.178.8.2279-2286.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. REESE E. T., SIU R. G. H., LEVINSON H. S. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol. 1950 Apr;59(4):485–497. doi: 10.1128/jb.59.4.485-497.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reverbel-Leroy C., Belaich A., Bernadac A., Gaudin C., Belaich J. P., Tardif C. Molecular study and overexpression of the Clostridium cellulolyticum celF cellulase gene in Escherichia coli. Microbiology. 1996 Apr;142(Pt 4):1013–1023. doi: 10.1099/00221287-142-4-1013. [DOI] [PubMed] [Google Scholar]
  21. Shen H., Gilkes N. R., Kilburn D. G., Miller R. C., Jr, Warren R. A. Cellobiohydrolase B, a second exo-cellobiohydrolase from the cellulolytic bacterium Cellulomonas fimi. Biochem J. 1995 Oct 1;311(Pt 1):67–74. doi: 10.1042/bj3110067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shen H., Tomme P., Meinke A., Gilkes N. R., Kilburn D. G., Warren R. A., Miller R. C., Jr Stereochemical course of hydrolysis catalysed by Cellulomonas fimi CenE, a member of a new family of beta-1,4-glucanases. Biochem Biophys Res Commun. 1994 Mar 30;199(3):1223–1228. doi: 10.1006/bbrc.1994.1361. [DOI] [PubMed] [Google Scholar]
  23. Shima S., Igarashi Y., Kodama T. Nucleotide sequence analysis of the endoglucanase-encoding gene, celCCD, of Clostridium cellulolyticum. Gene. 1991 Jul 31;104(1):33–38. doi: 10.1016/0378-1119(91)90461-j. [DOI] [PubMed] [Google Scholar]
  24. Stephenson R. C., Clarke S. Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. J Biol Chem. 1989 Apr 15;264(11):6164–6170. [PubMed] [Google Scholar]
  25. Ståhlberg J., Johansson G., Pettersson G. Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. Biochim Biophys Acta. 1993 May 7;1157(1):107–113. doi: 10.1016/0304-4165(93)90085-m. [DOI] [PubMed] [Google Scholar]
  26. Tokatlidis K., Salamitou S., Béguin P., Dhurjati P., Aubert J. P. Interaction of the duplicated segment carried by Clostridium thermocellum cellulases with cellulosome components. FEBS Lett. 1991 Oct 21;291(2):185–188. doi: 10.1016/0014-5793(91)81279-h. [DOI] [PubMed] [Google Scholar]
  27. Tomizawa H., Yamada H., Hashimoto Y., Imoto T. Stabilization of lysozyme against irreversible inactivation by alterations of the Asp-Gly sequences. Protein Eng. 1995 Oct;8(10):1023–1028. doi: 10.1093/protein/8.10.1023. [DOI] [PubMed] [Google Scholar]
  28. Tomme P., Warren R. A., Gilkes N. R. Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol. 1995;37:1–81. doi: 10.1016/s0065-2911(08)60143-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES