Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jan;179(1):115–121. doi: 10.1128/jb.179.1.115-121.1997

2-Naphthoate catabolic pathway in Burkholderia strain JT 1500.

B Morawski 1, R W Eaton 1, J T Rossiter 1, S Guoping 1, H Griengl 1, D W Ribbons 1
PMCID: PMC178668  PMID: 8981987

Abstract

Burkholderia strain (JT 1500), able to use 2-naphthoate as the sole source of carbon, was isolated from soil. On the basis of growth characteristics, oxygen uptake experiments, enzyme assays, and detection of intermediates, a degradation pathway of 2-naphthoate is proposed. The features of this pathway are convergent with those for phenanthrene. We propose a pathway for the conversion of 2-naphthoate to 1 mol (each) of pyruvate, succinate, and acetyl coenzyme A and 2 mol of CO2. During growth in the presence of 2-naphthoate, six metabolites were detected by thin-layer chromatography, high-performance liquid chromatography, and spectroscopy. 1-Hydroxy-2-naphthoate accumulated in the culture broth during growth on 2-naphthoate. Also, the formation of 2'-carboxybenzalpyruvate, phthalaldehydate, phthalate, protocatechuate, and beta-carboxy-cis,cis-muconic acid was demonstrated. (1R,2S)-cis-1,2-Dihydro-1,2-dihydroxy-2-naphthoate was thus considered an intermediate between 2-naphthoate and 1-hydroxy-2-naphthoate, but it was not transformed by whole cells or their extracts. We conclude that this diol is not responsible for the formation of 1-hydroxy-2-naphthoate from 2-naphthoate but that one of the other three diastereomers is not eliminated as a potential intermediate for a dehydration reaction.

Full Text

The Full Text of this article is available as a PDF (219.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott B. J., Gledhill W. E. The extracellular accumulation of metabolic products by hydrocarbon-degrading microorganisms. Adv Appl Microbiol. 1971;14:249–388. doi: 10.1016/s0065-2164(08)70546-x. [DOI] [PubMed] [Google Scholar]
  2. Barnsley E. A. Bacterial oxidation of naphthalene and phenanthrene. J Bacteriol. 1983 Feb;153(2):1069–1071. doi: 10.1128/jb.153.2.1069-1071.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnsley E. A. Metabolism of 2,6-dimethylnaphthalene by flavobacteria. Appl Environ Microbiol. 1988 Feb;54(2):428–433. doi: 10.1128/aem.54.2.428-433.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barnsley E. A. Phthalate pathway of phenanthrene metabolism: formation of 2'-carboxybenzalpyruvate. J Bacteriol. 1983 Apr;154(1):113–117. doi: 10.1128/jb.154.1.113-117.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Brilon C., Beckmann W., Knackmuss H. J. Catabolism of Naphthalenesulfonic Acids by Pseudomonas sp. A3 and Pseudomonas sp. C22. Appl Environ Microbiol. 1981 Jul;42(1):44–55. doi: 10.1128/aem.42.1.44-55.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cerniglia C. E. Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol. 1984;30:31–71. doi: 10.1016/s0065-2164(08)70052-2. [DOI] [PubMed] [Google Scholar]
  8. DAGLEY S., EVANS W. C., RIBBONS D. W. New pathways in the oxidative metabolism of aromatic compounds by microorganisms. Nature. 1960 Nov 12;188:560–566. doi: 10.1038/188560a0. [DOI] [PubMed] [Google Scholar]
  9. EVANS W. C., FERNLEY H. N., GRIFFITHS E. OXIDATIVE METABOLISM OF PHENANTHRENE AND ANTHRACENE BY SOIL PSEUDOMONADS. THE RING-FISSION MECHANISM. Biochem J. 1965 Jun;95:819–831. doi: 10.1042/bj0950819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eaton R. W., Chapman P. J. Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. J Bacteriol. 1992 Dec;174(23):7542–7554. doi: 10.1128/jb.174.23.7542-7554.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eaton R. W., Ribbons D. W. Utilization of phthalate esters by micrococci. Arch Microbiol. 1982 Aug;132(2):185–188. doi: 10.1007/BF00508728. [DOI] [PubMed] [Google Scholar]
  12. Engesser K. H., Strubel V., Christoglou K., Fischer P., Rast H. G. Dioxygenolytic cleavage of aryl ether bonds: 1,10-dihydro-1,10-dihydroxyfluoren-9-one, a novel arene dihydrodiol as evidence for angular dioxygenation of dibenzofuran. FEMS Microbiol Lett. 1989 Nov;53(1-2):205–209. doi: 10.1016/0378-1097(89)90392-3. [DOI] [PubMed] [Google Scholar]
  13. Guerin W. F., Jones G. E. Two-stage mineralization of phenanthrene by estuarine enrichment cultures. Appl Environ Microbiol. 1988 Apr;54(4):929–936. doi: 10.1128/aem.54.4.929-936.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mahajan M. C., Phale P. S., Vaidyanathan C. S. Evidence for the involvement of multiple pathways in the biodegradation of 1- and 2-methylnaphthalene by Pseudomonas putida CSV86. Arch Microbiol. 1994;161(5):425–433. doi: 10.1007/BF00288954. [DOI] [PubMed] [Google Scholar]
  15. Miyachi N., Tanaka T., Suzuki T., Hotta Y., Omori T. Microbial oxidation of dimethylnaphthalene isomers. Appl Environ Microbiol. 1993 May;59(5):1504–1506. doi: 10.1128/aem.59.5.1504-1506.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nakazawa T., Hayashi E. Phthalate and 4-hydroxyphthalate metabolism in Pseudomonas testosteroni: purification and properties of 4,5-dihydroxyphthalate decarboxylase. Appl Environ Microbiol. 1978 Aug;36(2):264–269. doi: 10.1128/aem.36.2.264-269.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nakazawa T., Hayashi E. Phthalate metabolism in Pseudomonas testosteroni: accumulation of 4,5-dihydroxyphthalate by a mutant strain. J Bacteriol. 1977 Jul;131(1):42–48. doi: 10.1128/jb.131.1.42-48.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ornston L. N., Stanier R. Y. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. J Biol Chem. 1966 Aug 25;241(16):3776–3786. [PubMed] [Google Scholar]
  19. Phale P. S., Mahajan M. C., Vaidyanathan C. S. A pathway for biodegradation of 1-naphthoic acid by Pseudomonas maltophilia CSV89. Arch Microbiol. 1995 Jan;163(1):42–47. doi: 10.1007/BF00262202. [DOI] [PubMed] [Google Scholar]
  20. Phillips D. H. Fifty years of benzo(a)pyrene. Nature. 1983 Jun 9;303(5917):468–472. doi: 10.1038/303468a0. [DOI] [PubMed] [Google Scholar]
  21. ROGOFF M. H. Chemistry of oxidation of polycyclic aromatic hydrocarbons by soil pseudomonads. J Bacteriol. 1962 May;83:998–1004. doi: 10.1128/jb.83.5.998-1004.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. ROGOFF M. H., WENDER I. The microbiology of coal. I. Bacterial oxidation of phenanthrene. J Bacteriol. 1957 Feb;73(2):264–268. doi: 10.1128/jb.73.2.264-268.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ribbons D. W., Evans W. C. Oxidative metabolism of phthalic acid by soil pseudomonads. Biochem J. 1960 Aug;76(2):310–318. doi: 10.1042/bj0760310. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES