Abstract
Burkholderia strain (JT 1500), able to use 2-naphthoate as the sole source of carbon, was isolated from soil. On the basis of growth characteristics, oxygen uptake experiments, enzyme assays, and detection of intermediates, a degradation pathway of 2-naphthoate is proposed. The features of this pathway are convergent with those for phenanthrene. We propose a pathway for the conversion of 2-naphthoate to 1 mol (each) of pyruvate, succinate, and acetyl coenzyme A and 2 mol of CO2. During growth in the presence of 2-naphthoate, six metabolites were detected by thin-layer chromatography, high-performance liquid chromatography, and spectroscopy. 1-Hydroxy-2-naphthoate accumulated in the culture broth during growth on 2-naphthoate. Also, the formation of 2'-carboxybenzalpyruvate, phthalaldehydate, phthalate, protocatechuate, and beta-carboxy-cis,cis-muconic acid was demonstrated. (1R,2S)-cis-1,2-Dihydro-1,2-dihydroxy-2-naphthoate was thus considered an intermediate between 2-naphthoate and 1-hydroxy-2-naphthoate, but it was not transformed by whole cells or their extracts. We conclude that this diol is not responsible for the formation of 1-hydroxy-2-naphthoate from 2-naphthoate but that one of the other three diastereomers is not eliminated as a potential intermediate for a dehydration reaction.
Full Text
The Full Text of this article is available as a PDF (219.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbott B. J., Gledhill W. E. The extracellular accumulation of metabolic products by hydrocarbon-degrading microorganisms. Adv Appl Microbiol. 1971;14:249–388. doi: 10.1016/s0065-2164(08)70546-x. [DOI] [PubMed] [Google Scholar]
- Barnsley E. A. Bacterial oxidation of naphthalene and phenanthrene. J Bacteriol. 1983 Feb;153(2):1069–1071. doi: 10.1128/jb.153.2.1069-1071.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnsley E. A. Metabolism of 2,6-dimethylnaphthalene by flavobacteria. Appl Environ Microbiol. 1988 Feb;54(2):428–433. doi: 10.1128/aem.54.2.428-433.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnsley E. A. Phthalate pathway of phenanthrene metabolism: formation of 2'-carboxybenzalpyruvate. J Bacteriol. 1983 Apr;154(1):113–117. doi: 10.1128/jb.154.1.113-117.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brilon C., Beckmann W., Knackmuss H. J. Catabolism of Naphthalenesulfonic Acids by Pseudomonas sp. A3 and Pseudomonas sp. C22. Appl Environ Microbiol. 1981 Jul;42(1):44–55. doi: 10.1128/aem.42.1.44-55.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cerniglia C. E. Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol. 1984;30:31–71. doi: 10.1016/s0065-2164(08)70052-2. [DOI] [PubMed] [Google Scholar]
- DAGLEY S., EVANS W. C., RIBBONS D. W. New pathways in the oxidative metabolism of aromatic compounds by microorganisms. Nature. 1960 Nov 12;188:560–566. doi: 10.1038/188560a0. [DOI] [PubMed] [Google Scholar]
- EVANS W. C., FERNLEY H. N., GRIFFITHS E. OXIDATIVE METABOLISM OF PHENANTHRENE AND ANTHRACENE BY SOIL PSEUDOMONADS. THE RING-FISSION MECHANISM. Biochem J. 1965 Jun;95:819–831. doi: 10.1042/bj0950819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eaton R. W., Chapman P. J. Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. J Bacteriol. 1992 Dec;174(23):7542–7554. doi: 10.1128/jb.174.23.7542-7554.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eaton R. W., Ribbons D. W. Utilization of phthalate esters by micrococci. Arch Microbiol. 1982 Aug;132(2):185–188. doi: 10.1007/BF00508728. [DOI] [PubMed] [Google Scholar]
- Engesser K. H., Strubel V., Christoglou K., Fischer P., Rast H. G. Dioxygenolytic cleavage of aryl ether bonds: 1,10-dihydro-1,10-dihydroxyfluoren-9-one, a novel arene dihydrodiol as evidence for angular dioxygenation of dibenzofuran. FEMS Microbiol Lett. 1989 Nov;53(1-2):205–209. doi: 10.1016/0378-1097(89)90392-3. [DOI] [PubMed] [Google Scholar]
- Guerin W. F., Jones G. E. Two-stage mineralization of phenanthrene by estuarine enrichment cultures. Appl Environ Microbiol. 1988 Apr;54(4):929–936. doi: 10.1128/aem.54.4.929-936.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahajan M. C., Phale P. S., Vaidyanathan C. S. Evidence for the involvement of multiple pathways in the biodegradation of 1- and 2-methylnaphthalene by Pseudomonas putida CSV86. Arch Microbiol. 1994;161(5):425–433. doi: 10.1007/BF00288954. [DOI] [PubMed] [Google Scholar]
- Miyachi N., Tanaka T., Suzuki T., Hotta Y., Omori T. Microbial oxidation of dimethylnaphthalene isomers. Appl Environ Microbiol. 1993 May;59(5):1504–1506. doi: 10.1128/aem.59.5.1504-1506.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakazawa T., Hayashi E. Phthalate and 4-hydroxyphthalate metabolism in Pseudomonas testosteroni: purification and properties of 4,5-dihydroxyphthalate decarboxylase. Appl Environ Microbiol. 1978 Aug;36(2):264–269. doi: 10.1128/aem.36.2.264-269.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakazawa T., Hayashi E. Phthalate metabolism in Pseudomonas testosteroni: accumulation of 4,5-dihydroxyphthalate by a mutant strain. J Bacteriol. 1977 Jul;131(1):42–48. doi: 10.1128/jb.131.1.42-48.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ornston L. N., Stanier R. Y. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. J Biol Chem. 1966 Aug 25;241(16):3776–3786. [PubMed] [Google Scholar]
- Phale P. S., Mahajan M. C., Vaidyanathan C. S. A pathway for biodegradation of 1-naphthoic acid by Pseudomonas maltophilia CSV89. Arch Microbiol. 1995 Jan;163(1):42–47. doi: 10.1007/BF00262202. [DOI] [PubMed] [Google Scholar]
- Phillips D. H. Fifty years of benzo(a)pyrene. Nature. 1983 Jun 9;303(5917):468–472. doi: 10.1038/303468a0. [DOI] [PubMed] [Google Scholar]
- ROGOFF M. H. Chemistry of oxidation of polycyclic aromatic hydrocarbons by soil pseudomonads. J Bacteriol. 1962 May;83:998–1004. doi: 10.1128/jb.83.5.998-1004.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROGOFF M. H., WENDER I. The microbiology of coal. I. Bacterial oxidation of phenanthrene. J Bacteriol. 1957 Feb;73(2):264–268. doi: 10.1128/jb.73.2.264-268.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ribbons D. W., Evans W. C. Oxidative metabolism of phthalic acid by soil pseudomonads. Biochem J. 1960 Aug;76(2):310–318. doi: 10.1042/bj0760310. [DOI] [PMC free article] [PubMed] [Google Scholar]