Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jan;179(1):122–127. doi: 10.1128/jb.179.1.122-127.1997

Denaturation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2): possible relevance to other organisms.

S H Oh 1, K F Chater 1
PMCID: PMC178669  PMID: 8981988

Abstract

Using Streptomyces coelicolor A3(2) protoplasts, the number of transformants obtained by homologous recombination of incoming double-stranded circular DNA with the recipient chromosome was greatly stimulated by simple denaturation of the donor DNA. This procedure was very effective with inserts over a ca. 100-fold size range, the largest tested being ca. 40-kb inserts in cosmids. These observations led to transformation experiments with linearized cloned DNA and randomly sheared genomic DNA. In both cases, DNA denaturation led to significant levels of transformation. Most of the transformants had resulted from the predicted homologous recombination events. A number of genetic manipulations will be made easier or possible by these procedures.

Full Text

The Full Text of this article is available as a PDF (361.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angell S., Schwarz E., Bibb M. J. The glucose kinase gene of Streptomyces coelicolor A3(2): its nucleotide sequence, transcriptional analysis and role in glucose repression. Mol Microbiol. 1992 Oct;6(19):2833–2844. doi: 10.1111/j.1365-2958.1992.tb01463.x. [DOI] [PubMed] [Google Scholar]
  2. Balasubramanian V., Pavelka M. S., Jr, Bardarov S. S., Martin J., Weisbrod T. R., McAdam R. A., Bloom B. R., Jacobs W. R., Jr Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates. J Bacteriol. 1996 Jan;178(1):273–279. doi: 10.1128/jb.178.1.273-279.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baulard A., Kremer L., Locht C. Efficient homologous recombination in fast-growing and slow-growing mycobacteria. J Bacteriol. 1996 Jun;178(11):3091–3098. doi: 10.1128/jb.178.11.3091-3098.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bedford D. J., Laity C., Buttner M. J. Two genes involved in the phase-variable phi C31 resistance mechanism of Streptomyces coelicolor A3(2). J Bacteriol. 1995 Aug;177(16):4681–4689. doi: 10.1128/jb.177.16.4681-4689.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chater K. F. A morphological and genetic mapping study of white colony mutants of Streptomyces coelicolor. J Gen Microbiol. 1972 Aug;72(1):9–28. doi: 10.1099/00221287-72-1-9. [DOI] [PubMed] [Google Scholar]
  6. Chater K. F., Bruton C. J., King A. A., Suarez J. E. The expression of Streptomyces and Escherichia coli drug-resistance determinants cloned into the Streptomyces phage phi C31. Gene. 1982 Jul-Aug;19(1):21–32. doi: 10.1016/0378-1119(82)90185-8. [DOI] [PubMed] [Google Scholar]
  7. Chater K. F., Bruton C. J. Mutational cloning in Streptomyces and the isolation of antibiotic production genes. Gene. 1983 Dec;26(1):67–78. doi: 10.1016/0378-1119(83)90037-9. [DOI] [PubMed] [Google Scholar]
  8. Davis N. K., Chater K. F. The Streptomyces coelicolor whiB gene encodes a small transcription factor-like protein dispensable for growth but essential for sporulation. Mol Gen Genet. 1992 Apr;232(3):351–358. doi: 10.1007/BF00266237. [DOI] [PubMed] [Google Scholar]
  9. Evans G. A., Lewis K., Rothenberg B. E. High efficiency vectors for cosmid microcloning and genomic analysis. Gene. 1989 Jun 30;79(1):9–20. doi: 10.1016/0378-1119(89)90088-7. [DOI] [PubMed] [Google Scholar]
  10. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  11. Hillemann D., Pühler A., Wohlleben W. Gene disruption and gene replacement in Streptomyces via single stranded DNA transformation of integration vectors. Nucleic Acids Res. 1991 Feb 25;19(4):727–731. doi: 10.1093/nar/19.4.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hopwood D. A., Wildermuth H., Palmer H. M. Mutants of Streptomyces coelicolor defective in sporulation. J Gen Microbiol. 1970 Jun;61(3):397–408. doi: 10.1099/00221287-61-3-397. [DOI] [PubMed] [Google Scholar]
  13. Ikeda H., Seno E. T., Bruton C. J., Chater K. F. Genetic mapping, cloning and physiological aspects of the glucose kinase gene of Streptomyces coelicolor. Mol Gen Genet. 1984;196(3):501–507. doi: 10.1007/BF00436199. [DOI] [PubMed] [Google Scholar]
  14. Khosla C., Ebert-Khosla S., Hopwood D. A. Targeted gene replacements in a Streptomyces polyketide synthase gene cluster: role for the acyl carrier protein. Mol Microbiol. 1992 Nov;6(21):3237–3249. doi: 10.1111/j.1365-2958.1992.tb01778.x. [DOI] [PubMed] [Google Scholar]
  15. Kieser T., Hopwood D. A. Genetic manipulation of Streptomyces: integrating vectors and gene replacement. Methods Enzymol. 1991;204:430–458. doi: 10.1016/0076-6879(91)04023-h. [DOI] [PubMed] [Google Scholar]
  16. Kieser T., Melton R. E. Plasmid pIJ699, a multi-copy positive-selection vector for Streptomyces. Gene. 1988 May 15;65(1):83–91. doi: 10.1016/0378-1119(88)90419-2. [DOI] [PubMed] [Google Scholar]
  17. MacNeil D. J. Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. J Bacteriol. 1988 Dec;170(12):5607–5612. doi: 10.1128/jb.170.12.5607-5612.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene. 1992 Feb 1;111(1):61–68. doi: 10.1016/0378-1119(92)90603-m. [DOI] [PubMed] [Google Scholar]
  19. MacNeil T., Gewain K. M., MacNeil D. J. Deletion analysis of the avermectin biosynthetic genes of Streptomyces avermitilis by gene cluster displacement. J Bacteriol. 1993 May;175(9):2552–2563. doi: 10.1128/jb.175.9.2552-2563.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Makins J. F., Holt G. Liposome-mediated transformation of streptomycetes by chromosomal DNA. Nature. 1981 Oct 22;293(5834):671–673. doi: 10.1038/293671a0. [DOI] [PubMed] [Google Scholar]
  21. Norman E., Dellagostin O. A., McFadden J., Dale J. W. Gene replacement by homologous recombination in Mycobacterium bovis BCG. Mol Microbiol. 1995 May;16(4):755–760. doi: 10.1111/j.1365-2958.1995.tb02436.x. [DOI] [PubMed] [Google Scholar]
  22. Ochi K. Protoplast fusion permits high-frequency transfer of a Streptomyces determinant which mediates actinomycin synthesis. J Bacteriol. 1982 May;150(2):592–597. doi: 10.1128/jb.150.2.592-597.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pospiech A., Neumann B. A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet. 1995 Jun;11(6):217–218. doi: 10.1016/s0168-9525(00)89052-6. [DOI] [PubMed] [Google Scholar]
  24. Redenbach M., Kieser H. M., Denapaite D., Eichner A., Cullum J., Kinashi H., Hopwood D. A. A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol. 1996 Jul;21(1):77–96. doi: 10.1046/j.1365-2958.1996.6191336.x. [DOI] [PubMed] [Google Scholar]
  25. Reyrat J. M., Berthet F. X., Gicquel B. The urease locus of Mycobacterium tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium bovis bacillus Calmette-Guérin. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8768–8772. doi: 10.1073/pnas.92.19.8768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zalacain M., González A., Guerrero M. C., Mattaliano R. J., Malpartida F., Jiménez A. Nucleotide sequence of the hygromycin B phosphotransferase gene from Streptomyces hygroscopicus. Nucleic Acids Res. 1986 Feb 25;14(4):1565–1581. doi: 10.1093/nar/14.4.1565. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES