Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jan;179(1):157–162. doi: 10.1128/jb.179.1.157-162.1997

Expression of bacterial mtlD in Saccharomyces cerevisiae results in mannitol synthesis and protects a glycerol-defective mutant from high-salt and oxidative stress.

V Chaturvedi 1, A Bartiss 1, B Wong 1
PMCID: PMC178674  PMID: 8981993

Abstract

Polyols, or polyhydroxy alcohols, are produced by many fungi. Saccharomyces cerevisiae produces large amounts of glycerol, and several fungi that cause serious human infections produce D-arabinitol and mannitol. Glycerol functions as an intracellular osmolyte in S. cerevisiae, but the functions of D-arabinitol and mannitol in pathogenic fungi are not yet known. To investigate the functions of mannitol, we constructed a new mannitol biosynthetic pathway in S. cerevisiae. S. cerevisiae transformed with multicopy plasmids encoding the mannitol-1-phosphate dehydrogenase of Escherichia coli produced mannitol, whereas S. cerevisiae transformed with control plasmids did not. Although mannitol production had no obvious phenotypic effects in wild-type S. cerevisiae, it restored the ability of a glycerol-defective, osmosensitive osg1-1 mutant to grow in the presence of high NaCl concentrations. Moreover, osg1-1 mutants producing mannitol were more resistant to killing by oxidants produced by a cell-free H2O2-FeSO4-NaI system than were controls. These results indicate that mannitol can (i) function as an intracellular osmolyte in S. cerevisiae, (ii) substitute for glycerol as the principal intracellular osmolyte in S. cerevisiae, and (iii) protect S. cerevisiae from oxidative damage by scavenging toxic oxygen intermediates.

Full Text

The Full Text of this article is available as a PDF (235.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertyn J., Hohmann S., Thevelein J. M., Prior B. A. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol. 1994 Jun;14(6):4135–4144. doi: 10.1128/mcb.14.6.4135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blomberg A., Adler L. Physiology of osmotolerance in fungi. Adv Microb Physiol. 1992;33:145–212. doi: 10.1016/s0065-2911(08)60217-9. [DOI] [PubMed] [Google Scholar]
  3. Brewster J. L., de Valoir T., Dwyer N. D., Winter E., Gustin M. C. An osmosensing signal transduction pathway in yeast. Science. 1993 Mar 19;259(5102):1760–1763. doi: 10.1126/science.7681220. [DOI] [PubMed] [Google Scholar]
  4. Chaturvedi V., Flynn T., Niehaus W. G., Wong B. Stress tolerance and pathogenic potential of a mannitol mutant of Cryptococcus neoformans. Microbiology. 1996 Apr;142(Pt 4):937–943. doi: 10.1099/00221287-142-4-937. [DOI] [PubMed] [Google Scholar]
  5. Chaturvedi V., Wong B., Newman S. L. Oxidative killing of Cryptococcus neoformans by human neutrophils. Evidence that fungal mannitol protects by scavenging reactive oxygen intermediates. J Immunol. 1996 May 15;156(10):3836–3840. [PubMed] [Google Scholar]
  6. Eriksson P., André L., Ansell R., Blomberg A., Adler L. Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol Microbiol. 1995 Jul;17(1):95–107. doi: 10.1111/j.1365-2958.1995.mmi_17010095.x. [DOI] [PubMed] [Google Scholar]
  7. Gietz R. D., Schiestl R. H., Willems A. R., Woods R. A. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995 Apr 15;11(4):355–360. doi: 10.1002/yea.320110408. [DOI] [PubMed] [Google Scholar]
  8. Halliwell B. Antioxidant characterization. Methodology and mechanism. Biochem Pharmacol. 1995 May 17;49(10):1341–1348. doi: 10.1016/0006-2952(95)00088-h. [DOI] [PubMed] [Google Scholar]
  9. Hamilton C. M., Aldea M., Washburn B. K., Babitzke P., Kushner S. R. New method for generating deletions and gene replacements in Escherichia coli. J Bacteriol. 1989 Sep;171(9):4617–4622. doi: 10.1128/jb.171.9.4617-4622.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  11. Jennings D. H. Polyol metabolism in fungi. Adv Microb Physiol. 1984;25:149–193. doi: 10.1016/s0065-2911(08)60292-1. [DOI] [PubMed] [Google Scholar]
  12. Jiang W., Wu L. F., Tomich J., Saier M. H., Jr, Niehaus W. G. Corrected sequence of the mannitol (mtl) operon in Escherichia coli. Mol Microbiol. 1990 Nov;4(11):2003–2006. doi: 10.1111/j.1365-2958.1990.tb02050.x. [DOI] [PubMed] [Google Scholar]
  13. Kiehn T. E., Bernard E. M., Gold J. W., Armstrong D. Candidiasis: detection by gas-liquid chromatography of D-arabinitol, a fungal metabolite, in human serum. Science. 1979 Nov 2;206(4418):577–580. doi: 10.1126/science.493963. [DOI] [PubMed] [Google Scholar]
  14. Klebanoff S. J. The iron-H2O2-iodide cytotoxic system. J Exp Med. 1982 Oct 1;156(4):1262–1267. doi: 10.1084/jem.156.4.1262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Köhrer K., Domdey H. Preparation of high molecular weight RNA. Methods Enzymol. 1991;194:398–405. doi: 10.1016/0076-6879(91)94030-g. [DOI] [PubMed] [Google Scholar]
  16. Larsson K., Ansell R., Eriksson P., Adler L. A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol Microbiol. 1993 Dec;10(5):1101–1111. doi: 10.1111/j.1365-2958.1993.tb00980.x. [DOI] [PubMed] [Google Scholar]
  17. Levitz S. M., Diamond R. D. Killing of Aspergillus fumigatus spores and Candida albicans yeast phase by the iron-hydrogen peroxide-iodide cytotoxic system: comparison with the myeloperoxidase-hydrogen peroxide-halide system. Infect Immun. 1984 Mar;43(3):1100–1102. doi: 10.1128/iai.43.3.1100-1102.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maeda T., Takekawa M., Saito H. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science. 1995 Jul 28;269(5223):554–558. doi: 10.1126/science.7624781. [DOI] [PubMed] [Google Scholar]
  19. Mager W. H., Varela J. C. Osmostress response of the yeast Saccharomyces. Mol Microbiol. 1993 Oct;10(2):253–258. [PubMed] [Google Scholar]
  20. Novotny M. J., Reizer J., Esch F., Saier M. H., Jr Purification and properties of D-mannitol-1-phosphate dehydrogenase and D-glucitol-6-phosphate dehydrogenase from Escherichia coli. J Bacteriol. 1984 Sep;159(3):986–990. doi: 10.1128/jb.159.3.986-990.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tarczynski M. C., Jensen R. G., Bohnert H. J. Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2600–2604. doi: 10.1073/pnas.89.7.2600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tarczynski M. C., Jensen R. G., Bohnert H. J. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science. 1993 Jan 22;259(5094):508–510. doi: 10.1126/science.259.5094.508. [DOI] [PubMed] [Google Scholar]
  23. Tauber A. I., Babior B. M. Evidence for hydroxyl radical production by human neutrophils. J Clin Invest. 1977 Aug;60(2):374–379. doi: 10.1172/JCI108786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wang H. T., Rahaim P., Robbins P., Yocum R. R. Cloning, sequence, and disruption of the Saccharomyces diastaticus DAR1 gene encoding a glycerol-3-phosphate dehydrogenase. J Bacteriol. 1994 Nov;176(22):7091–7095. doi: 10.1128/jb.176.22.7091-7095.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wong B., Brauer K. L., Tsai R. R., Jayasimhulu K. Increased amounts of the Aspergillus metabolite D-mannitol in tissue and serum of rats with experimental aspergillosis. J Infect Dis. 1989 Jul;160(1):95–103. doi: 10.1093/infdis/160.1.95. [DOI] [PubMed] [Google Scholar]
  26. Wong B., Leeson S., Grindle S., Magee B., Brooks E., Magee P. T. D-arabitol metabolism in Candida albicans: construction and analysis of mutants lacking D-arabitol dehydrogenase. J Bacteriol. 1995 Jun;177(11):2971–2976. doi: 10.1128/jb.177.11.2971-2976.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wong B., Perfect J. R., Beggs S., Wright K. A. Production of the hexitol D-mannitol by Cryptococcus neoformans in vitro and in rabbits with experimental meningitis. Infect Immun. 1990 Jun;58(6):1664–1670. doi: 10.1128/iai.58.6.1664-1670.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES