Abstract
The enzyme which catalyzes the dehalogenation of 2,4,6-trichlorophenol (TCP) was purified to apparent homogeneity from an extract of TCP-induced cells of Azotobacter sp. strain GP1. The initial step of TCP degradation in this bacterium is inducible by TCP; no activity was found in succinate-grown cells or in phenol-induced cells. NADH, flavin adenine dinucleotide, and O2 are required as cofactors. As reaction products, 2,6-dichlorohydroquinone and Cl- ions were identified. Studies of the stoichiometry revealed the consumption of 2 mol of NADH plus 1 mol of O2 per mol of TCP and the formation of 1 mol of Cl- ions. No evidence for membrane association or for a multicomponent system was obtained. Molecular masses of 240 kDa for the native enzyme and 60 kDa for the subunit were determined, indicating a homotetrameric structure. Cross-linking studies with dimethylsuberimidate were consistent with this finding. TCP was the best substrate for 2,4,6-trichlorophenol-4-monooxygenase (TCP-4-monooxygenase). The majority of other chlorophenols converted by the enzyme bear a chloro substituent in the 4-position. 2,6-Dichlorophenol, also accepted as a substrate, was hydroxylated in the 4-position to 2,6-dichlorohydroquinone in a nondehalogenating reaction. NADH and O2 were consumed by the pure enzyme also in the absence of TCP with simultaneous production of H2O2. The NH2-terminal amino acid sequence of TCP-4-monooxygenase from Azotobacter sp. strain GP1 revealed complete identity with the nucleotide-derived sequence from the analogous enzyme from Pseudomonas pickettii and a high degree of homology with two nondehalogenating monooxygenases. The similarity in enzyme properties and the possible evolutionary relatedness of dehalogenating and nondehalogenating monooxygenases are discussed.
Full Text
The Full Text of this article is available as a PDF (233.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arunachalam U., Massey V., Vaidyanathan C. S. p-Hydroxyphenylacetate-3-hydroxylase. A two-protein component enzyme. J Biol Chem. 1992 Dec 25;267(36):25848–25855. [PubMed] [Google Scholar]
- Beadle C. A., Smith A. R. The purification and properties of 2,4-dichlorophenol hydroxylase from a strain of Acinetobacter species. Eur J Biochem. 1982 Apr 1;123(2):323–332. doi: 10.1111/j.1432-1033.1982.tb19771.x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Fetzner S., Lingens F. Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol Rev. 1994 Dec;58(4):641–685. doi: 10.1128/mr.58.4.641-685.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golovleva L. A., Zaborina O., Pertsova R., Baskunov B., Schurukhin Y., Kuzmin S. Degradation of polychlorinated phenols by Streptomyces rochei 303. Biodegradation. 1991;2(3):201–208. doi: 10.1007/BF00124494. [DOI] [PubMed] [Google Scholar]
- Gorsky L. D., Koop D. R., Coon M. J. On the stoichiometry of the oxidase and monooxygenase reactions catalyzed by liver microsomal cytochrome P-450. Products of oxygen reduction. J Biol Chem. 1984 Jun 10;259(11):6812–6817. [PubMed] [Google Scholar]
- Hormann K., Andreesen J. R. Purification and characterization of a pyrrole-2-carboxylate oxygenase from Arthrobacter strain Py1. Biol Chem Hoppe Seyler. 1994 Mar;375(3):211–218. [PubMed] [Google Scholar]
- Häggblom M. M. Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev. 1992 Sep;9(1):29–71. doi: 10.1111/j.1574-6968.1992.tb05823.x. [DOI] [PubMed] [Google Scholar]
- Häggblom M. Mechanisms of bacterial degradation and transformation of chlorinated monoaromatic compounds. J Basic Microbiol. 1990;30(2):115–141. doi: 10.1002/jobm.3620300214. [DOI] [PubMed] [Google Scholar]
- Kiyohara H., Hatta T., Ogawa Y., Kakuda T., Yokoyama H., Takizawa N. Isolation of Pseudomonas pickettii strains that degrade 2,4,6-trichlorophenol and their dechlorination of chlorophenols. Appl Environ Microbiol. 1992 Apr;58(4):1276–1283. doi: 10.1128/aem.58.4.1276-1283.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Latus M., Seitz H., Eberspacher J., Lingens F. Purification and Characterization of Hydroxyquinol 1,2-Dioxygenase from Azotobacter sp. Strain GP1. Appl Environ Microbiol. 1995 Jul;61(7):2453–2460. doi: 10.1128/aem.61.7.2453-2460.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li D. Y., Eberspächer J., Wagner B., Kuntzer J., Lingens F. Degradation of 2,4,6-trichlorophenol by Azotobacter sp. strain GP1. Appl Environ Microbiol. 1991 Jul;57(7):1920–1928. doi: 10.1128/aem.57.7.1920-1928.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orser C. S., Lange C. C. Molecular analysis of pentachlorophenol degradation. Biodegradation. 1994 Dec;5(3-4):277–288. doi: 10.1007/BF00696465. [DOI] [PubMed] [Google Scholar]
- Orser C. S., Lange C. C., Xun L., Zahrt T. C., Schneider B. J. Cloning, sequence analysis, and expression of the Flavobacterium pentachlorophenol-4-monooxygenase gene in Escherichia coli. J Bacteriol. 1993 Jan;175(2):411–416. doi: 10.1128/jb.175.2.411-416.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prieto M. A., Garcia J. L. Molecular characterization of 4-hydroxyphenylacetate 3-hydroxylase of Escherichia coli. A two-protein component enzyme. J Biol Chem. 1994 Sep 9;269(36):22823–22829. [PubMed] [Google Scholar]
- Radjendirane V., Bhat M. A., Vaidyanathan C. S. Affinity purification and characterization of 2,4-dichlorophenol hydroxylase from Pseudomonas cepacia. Arch Biochem Biophys. 1991 Jul;288(1):169–176. doi: 10.1016/0003-9861(91)90180-q. [DOI] [PubMed] [Google Scholar]
- Rajasekharan S., Rajasekharan R., Vaidyanathan C. S. Substrate-mediated purification and characterization of a 3-hydroxybenzoic acid-6-hydroxylase from Micrococcus. Arch Biochem Biophys. 1990 Apr;278(1):21–25. doi: 10.1016/0003-9861(90)90225-n. [DOI] [PubMed] [Google Scholar]
- Reineke W., Knackmuss H. J. Microbial degradation of haloaromatics. Annu Rev Microbiol. 1988;42:263–287. doi: 10.1146/annurev.mi.42.100188.001403. [DOI] [PubMed] [Google Scholar]
- Schenk T., Müller R., Mörsberger F., Otto M. K., Lingens F. Enzymatic dehalogenation of pentachlorophenol by extracts from Arthrobacter sp. strain ATCC 33790. J Bacteriol. 1989 Oct;171(10):5487–5491. doi: 10.1128/jb.171.10.5487-5491.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Tomasi I., Artaud I., Bertheau Y., Mansuy D. Metabolism of polychlorinated phenols by Pseudomonas cepacia AC1100: determination of the first two steps and specific inhibitory effect of methimazole. J Bacteriol. 1995 Jan;177(2):307–311. doi: 10.1128/jb.177.2.307-311.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uotila J. S., Kitunen V. H., Saastamoinen T., Coote T., Häggblom M. M., Salkinoja-Salonen M. S. Characterization of aromatic dehalogenases of Mycobacterium fortuitum CG-2. J Bacteriol. 1992 Sep;174(17):5669–5675. doi: 10.1128/jb.174.17.5669-5675.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uotila J. S., Salkinoja-Salonen M. S., Apajalahti J. H. Dechlorination of pentachlorophenol by membrane bound enzymes of Rhodococcus chlorophenolicus PCP-I. Biodegradation. 1991;2(1):25–31. doi: 10.1007/BF00122422. [DOI] [PubMed] [Google Scholar]
- Van Berkel W. J., Van Den Tweel W. J. Purification and characterisation of 3-hydroxyphenylacetate 6-hydroxylase: a novel FAD-dependent monooxygenase from a Flavobacterium species. Eur J Biochem. 1991 Nov 1;201(3):585–592. doi: 10.1111/j.1432-1033.1991.tb16318.x. [DOI] [PubMed] [Google Scholar]
- White-Stevens R. H., Kamin H. Studies of a flavoprotein, salicylate hydroxylase. I. Preparation, properties, and the uncoupling of oxygen reduction from hydroxylation. J Biol Chem. 1972 Apr 25;247(8):2358–2370. [PubMed] [Google Scholar]
- Wieser M., Eberspächer J., Vogler B., Lingens F. Metabolism of 4-chlorophenol by Azotobacter sp. GP1: structure of the meta cleavage product of 4-chlorocatechol. FEMS Microbiol Lett. 1994 Feb 1;116(1):73–78. doi: 10.1111/j.1574-6968.1994.tb06678.x. [DOI] [PubMed] [Google Scholar]
- Xun L., Orser C. S. Purification and properties of pentachlorophenol hydroxylase, a flavoprotein from Flavobacterium sp. strain ATCC 39723. J Bacteriol. 1991 Jul;173(14):4447–4453. doi: 10.1128/jb.173.14.4447-4453.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xun L. Purification and characterization of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100. J Bacteriol. 1996 May;178(9):2645–2649. doi: 10.1128/jb.178.9.2645-2649.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xun L., Topp E., Orser C. S. Diverse substrate range of a Flavobacterium pentachlorophenol hydroxylase and reaction stoichiometries. J Bacteriol. 1992 May;174(9):2898–2902. doi: 10.1128/jb.174.9.2898-2902.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zaborina O., Latus M., Eberspächer J., Golovleva L. A., Lingens F. Purification and characterization of 6-chlorohydroxyquinol 1,2-dioxygenase from Streptomyces rochei 303: comparison with an analogous enzyme from Azotobacter sp. strain GP1. J Bacteriol. 1995 Jan;177(1):229–234. doi: 10.1128/jb.177.1.229-234.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]