Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jan;179(2):364–369. doi: 10.1128/jb.179.2.364-369.1997

Dissection of the transcription machinery for housekeeping genes of Bradyrhizobium japonicum.

C Beck 1, R Marty 1, S Kläusli 1, H Hennecke 1, M Göttfert 1
PMCID: PMC178705  PMID: 8990287

Abstract

By using a PCR approach, the Bradyrhizobium japonicum sigA gene, which encodes the primary RNA polymerase sigma factor, sigma80, was cloned and its nucleotide sequence was established. The deduced protein is highly homologous to the SigA protein of Rhizobium meliloti (72% amino acid sequence identity) but less so to RpoD of Escherichia coli (51% identity). Well conserved is the C-terminal end of the protein, which is probably involved in promoter recognition and binding of the RNA polymerase core enzyme. A remarkable feature of the primary sequence is an alanine- and proline-rich segment of 24 amino acids between conserved regions 1 and 2, which might function as an interdomain linker. We purified the B. japonicum RNA polymerase holoenzyme. One of the subunits had an apparent molecular mass of 90 kDa and corresponded to the sigA gene product, as judged by N-terminal amino acid sequencing. The purified RNA polymerase was used in an in vitro transcription system to determine the transcription start sites of the rrn and groESL4 operons. They were identical to those previously identified in vivo. The rrn promoter was cloned upstream of a rho-independent terminator, yielding a transcript of about 240 bases. This served as a suitable template to analyze promoter activity. Then mutant derivatives of the rrn promoter were constructed and tested in in vitro transcription experiments. Several base pairs essential for promoter activity were thus identified. The results suggest that the well-characterized -35/-10 promoter class is predominantly used in B. japonicum for the expression of "housekeeping" genes.

Full Text

The Full Text of this article is available as a PDF (320.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agron P. G., Ditta G. S., Helinski D. R. Oxygen regulation of nifA transcription in vitro. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3506–3510. doi: 10.1073/pnas.90.8.3506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babst M., Hennecke H., Fischer H. M. Two different mechanisms are involved in the heat-shock regulation of chaperonin gene expression in Bradyrhizobium japonicum. Mol Microbiol. 1996 Feb;19(4):827–839. doi: 10.1046/j.1365-2958.1996.438968.x. [DOI] [PubMed] [Google Scholar]
  3. Barrios H., Fischer H. M., Hennecke H., Morett E. Overlapping promoters for two different RNA polymerase holoenzymes control Bradyrhizobium japonicum nifA expression. J Bacteriol. 1995 Apr;177(7):1760–1765. doi: 10.1128/jb.177.7.1760-1765.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Belyaeva T., Griffiths L., Minchin S., Cole J., Busby S. The Escherichia coli cysG promoter belongs to the 'extended -10' class of bacterial promoters. Biochem J. 1993 Dec 15;296(Pt 3):851–857. doi: 10.1042/bj2960851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carlson T. A., Guerinot M. L., Chelm B. K. Characterization of the gene encoding glutamine synthetase I (glnA) from Bradyrhizobium japonicum. J Bacteriol. 1985 May;162(2):698–703. doi: 10.1128/jb.162.2.698-703.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chan B., Busby S. Recognition of nucleotide sequences at the Escherichia coli galactose operon P1 promoter by RNA polymerase. Gene. 1989 Dec 14;84(2):227–236. doi: 10.1016/0378-1119(89)90496-4. [DOI] [PubMed] [Google Scholar]
  7. Dombroski A. J., Walter W. A., Record M. T., Jr, Siegele D. A., Gross C. A. Polypeptides containing highly conserved regions of transcription initiation factor sigma 70 exhibit specificity of binding to promoter DNA. Cell. 1992 Aug 7;70(3):501–512. doi: 10.1016/0092-8674(92)90174-b. [DOI] [PubMed] [Google Scholar]
  8. Dusha I., Schröder J., Putnoky P., Bánfalvi Z., Kondorosi A. A cell-free system from Rhizobium meliloti to study the specific expression of nodulation genes. Eur J Biochem. 1986 Oct 1;160(1):69–75. doi: 10.1111/j.1432-1033.1986.tb09941.x. [DOI] [PubMed] [Google Scholar]
  9. Fischer H. M., Babst M., Kaspar T., Acuña G., Arigoni F., Hennecke H. One member of a gro-ESL-like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J. 1993 Jul;12(7):2901–2912. doi: 10.1002/j.1460-2075.1993.tb05952.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fischer H. M. Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev. 1994 Sep;58(3):352–386. doi: 10.1128/mr.58.3.352-386.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fisher R. F., Brierley H. L., Mulligan J. T., Long S. R. Transcription of Rhizobium meliloti nodulation genes. Identification of a nodD transcription initiation site in vitro and in vivo. J Biol Chem. 1987 May 15;262(14):6849–6855. [PubMed] [Google Scholar]
  12. Green J. D., Perham R. N., Ullrich S. J., Appella E. Conformational studies of the interdomain linker peptides in the dihydrolipoyl acetyltransferase component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. J Biol Chem. 1992 Nov 25;267(33):23484–23488. [PubMed] [Google Scholar]
  13. Göttfert M. Regulation and function of rhizobial nodulation genes. FEMS Microbiol Rev. 1993 Jan;10(1-2):39–63. doi: 10.1111/j.1574-6968.1993.tb05863.x. [DOI] [PubMed] [Google Scholar]
  14. Kumar A., Williamson H. S., Fujita N., Ishihama A., Hayward R. S. A partially functional 245-amino-acid internal deletion derivative of Escherichia coli sigma 70. J Bacteriol. 1995 Sep;177(17):5193–5196. doi: 10.1128/jb.177.17.5193-5196.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kündig C., Beck C., Hennecke H., Göttfert M. A single rRNA gene region in Bradyrhizobium japonicum. J Bacteriol. 1995 Sep;177(17):5151–5154. doi: 10.1128/jb.177.17.5151-5154.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Liggit P., Cheng S. H., Baker E. J. Generating customized, long-lived 32P-labeled RNA size markers. Biotechniques. 1994 Sep;17(3):465-6, 468. [PubMed] [Google Scholar]
  17. Lisser S., Margalit H. Compilation of E. coli mRNA promoter sequences. Nucleic Acids Res. 1993 Apr 11;21(7):1507–1516. doi: 10.1093/nar/21.7.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lonetto M., Gribskov M., Gross C. A. The sigma 70 family: sequence conservation and evolutionary relationships. J Bacteriol. 1992 Jun;174(12):3843–3849. doi: 10.1128/jb.174.12.3843-3849.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Martin G. B., Thomashow M. F., Chelm B. K. Bradyrhizobium japonicum glnB, a putative nitrogen-regulatory gene, is regulated by NtrC at tandem promoters. J Bacteriol. 1989 Oct;171(10):5638–5645. doi: 10.1128/jb.171.10.5638-5645.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Merino E., Osuna J., Bolívar F., Soberón X. A general, PCR-based method for single or combinatorial oligonucleotide-directed mutagenesis on pUC/M13 vectors. Biotechniques. 1992 Apr;12(4):508–510. [PubMed] [Google Scholar]
  21. Morita M., Oka A. The structure of a transcriptional unit on colicin E1 plasmid. Eur J Biochem. 1979 Jul;97(2):435–443. doi: 10.1111/j.1432-1033.1979.tb13131.x. [DOI] [PubMed] [Google Scholar]
  22. Plaskon R. R., Wartell R. M. Sequence distributions associated with DNA curvature are found upstream of strong E. coli promoters. Nucleic Acids Res. 1987 Jan 26;15(2):785–796. doi: 10.1093/nar/15.2.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ramseier T. M., Göttfert M. Codon usage and G + C content in Bradyrhizobium japonicum genes are not uniform. Arch Microbiol. 1991;156(4):270–276. doi: 10.1007/BF00262997. [DOI] [PubMed] [Google Scholar]
  24. Regensburger B., Hennecke H. RNA polymerase from Rhizobium japonicum. Arch Microbiol. 1983 Aug;135(2):103–109. doi: 10.1007/BF00408017. [DOI] [PubMed] [Google Scholar]
  25. Ross W., Gosink K. K., Salomon J., Igarashi K., Zou C., Ishihama A., Severinov K., Gourse R. L. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science. 1993 Nov 26;262(5138):1407–1413. doi: 10.1126/science.8248780. [DOI] [PubMed] [Google Scholar]
  26. Rushing B. G., Long S. R. Cloning and characterization of the sigA gene encoding the major sigma subunit of Rhizobium meliloti. J Bacteriol. 1995 Dec;177(23):6952–6957. doi: 10.1128/jb.177.23.6952-6957.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Thöny-Meyer L., James P., Hennecke H. From one gene to two proteins: the biogenesis of cytochromes b and c1 in Bradyrhizobium japonicum. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):5001–5005. doi: 10.1073/pnas.88.11.5001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Thöny-Meyer L., Stax D., Hennecke H. An unusual gene cluster for the cytochrome bc1 complex in Bradyrhizobium japonicum and its requirement for effective root nodule symbiosis. Cell. 1989 May 19;57(4):683–697. doi: 10.1016/0092-8674(89)90137-2. [DOI] [PubMed] [Google Scholar]
  29. Thöny B., Anthamatten D., Hennecke H. Dual control of the Bradyrhizobium japonicum symbiotic nitrogen fixation regulatory operon fixR nifA: analysis of cis- and trans-acting elements. J Bacteriol. 1989 Aug;171(8):4162–4169. doi: 10.1128/jb.171.8.4162-4169.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Weidenhaupt M., Rossi P., Beck C., Fischer H. M., Hennecke H. Bradyrhizobium japonicum possesses two discrete sets of electron transfer flavoprotein genes: fixA, fixB and etfS, etfL. Arch Microbiol. 1996 Mar;165(3):169–178. doi: 10.1007/BF01692858. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES