Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jan;179(2):423–429. doi: 10.1128/jb.179.2.423-429.1997

The -45 region of the Escherichia coli lac promoter: CAP-dependent and CAP-independent transcription.

D Czarniecki 1, R J Noel Jr 1, W S Reznikoff 1
PMCID: PMC178712  PMID: 8990294

Abstract

The lactose (lac) operon promoter is positively regulated by the catabolite gene activator-cyclic AMP complex (CAP) that binds to the DNA located 61.5 bp upstream of the transcription start site. Between the CAP binding site and the core promoter sequence is a 13-bp sequence (from -38 to -50 [the -45 region]). The possible roles of the -45 region in determining the CAP-independent level of lac expression and in the CAP activation process were studied by isolating and characterizing random multisite mutations. Only a small percentage of mutants have dramatic effects on lac promoter activity. Among the mutations that did affect expression, a 26-fold range in lac promoter activity in vivo was observed in the CAP-independent activity. The highest level of CAP-independent lac expression (13-fold the level of the wild-type lac promoter) correlated with changes in the -40 to -45 sequence and required an intact RNA polymerase alpha subunit for in vitro expression, as expected for an upstream DNA recognition element. Mutant promoters varied in their ability to be stimulated by CAP in vivo, with levels ranging from 2-fold to the wild-type level of 22-fold. Only a change of twofold in responsiveness to CAP could be attributed to direct DNA sequence effects. The -40 to -45 sequence-dependent enhancement of promoter activity and CAP stimulation of promoter activity did not act additively. The mutant promoters also displayed other characteristics, such as the activation of nascent promoter-like activities overlapping lac P1 and, in one case, replicon-dependent changes in promoter activity.

Full Text

The Full Text of this article is available as a PDF (334.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adhya S., Garges S. Positive control. J Biol Chem. 1990 Jul 5;265(19):10797–10800. [PubMed] [Google Scholar]
  2. Blatter E. E., Ross W., Tang H., Gourse R. L., Ebright R. H. Domain organization of RNA polymerase alpha subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding. Cell. 1994 Sep 9;78(5):889–896. doi: 10.1016/s0092-8674(94)90682-3. [DOI] [PubMed] [Google Scholar]
  3. Del Sal G., Schneider C. A simple and fast method for preparing single stranded DNA template suitable for sequencing. Nucleic Acids Res. 1987 Dec 10;15(23):10047–10047. doi: 10.1093/nar/15.23.10047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eschenlauer A. C., Reznikoff W. S. Escherichia coli catabolite gene activator protein mutants defective in positive control of lac operon transcription. J Bacteriol. 1991 Aug;173(16):5024–5029. doi: 10.1128/jb.173.16.5024-5029.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Flatow U., Rajendrakumar G. V., Garges S. Analysis of the spacer DNA between the cyclic AMP receptor protein binding site and the lac promoter. J Bacteriol. 1996 Apr;178(8):2436–2439. doi: 10.1128/jb.178.8.2436-2439.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gaal T., Rao L., Estrem S. T., Yang J., Wartell R. M., Gourse R. L. Localization of the intrinsically bent DNA region upstream of the E.coli rrnB P1 promoter. Nucleic Acids Res. 1994 Jun 25;22(12):2344–2350. doi: 10.1093/nar/22.12.2344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gaal T., Ross W., Blatter E. E., Tang H., Jia X., Krishnan V. V., Assa-Munt N., Ebright R. H., Gourse R. L. DNA-binding determinants of the alpha subunit of RNA polymerase: novel DNA-binding domain architecture. Genes Dev. 1996 Jan 1;10(1):16–26. doi: 10.1101/gad.10.1.16. [DOI] [PubMed] [Google Scholar]
  8. Hawley D. K., McClure W. R. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 1983 Apr 25;11(8):2237–2255. doi: 10.1093/nar/11.8.2237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hopkins J. D. A new class of promoter mutations in the lactose operon of Escherichia coli. J Mol Biol. 1974 Aug 25;87(4):715–724. doi: 10.1016/0022-2836(74)90080-1. [DOI] [PubMed] [Google Scholar]
  10. Igarashi K., Ishihama A. Bipartite functional map of the E. coli RNA polymerase alpha subunit: involvement of the C-terminal region in transcription activation by cAMP-CRP. Cell. 1991 Jun 14;65(6):1015–1022. doi: 10.1016/0092-8674(91)90553-b. [DOI] [PubMed] [Google Scholar]
  11. Inoue T., Cech T. R. Secondary structure of the circular form of the Tetrahymena rRNA intervening sequence: a technique for RNA structure analysis using chemical probes and reverse transcriptase. Proc Natl Acad Sci U S A. 1985 Feb;82(3):648–652. doi: 10.1073/pnas.82.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnson R. C., Yin J. C., Reznikoff W. S. Control of Tn5 transposition in Escherichia coli is mediated by protein from the right repeat. Cell. 1982 Oct;30(3):873–882. doi: 10.1016/0092-8674(82)90292-6. [DOI] [PubMed] [Google Scholar]
  13. Karls R., Schulz V., Jovanovich S. B., Flynn S., Pak A., Reznikoff W. S. Pseudorevertants of a lac promoter mutation reveal overlapping nascent promoters. Nucleic Acids Res. 1989 May 25;17(10):3927–3949. doi: 10.1093/nar/17.10.3927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kolb A., Busby S., Buc H., Garges S., Adhya S. Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem. 1993;62:749–795. doi: 10.1146/annurev.bi.62.070193.003533. [DOI] [PubMed] [Google Scholar]
  15. Kolb A., Igarashi K., Ishihama A., Lavigne M., Buckle M., Buc H. E. coli RNA polymerase, deleted in the C-terminal part of its alpha-subunit, interacts differently with the cAMP-CRP complex at the lacP1 and at the galP1 promoter. Nucleic Acids Res. 1993 Jan 25;21(2):319–326. doi: 10.1093/nar/21.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  17. Murakami K., Fujita N., Ishihama A. Transcription factor recognition surface on the RNA polymerase alpha subunit is involved in contact with the DNA enhancer element. EMBO J. 1996 Aug 15;15(16):4358–4367. [PMC free article] [PubMed] [Google Scholar]
  18. Newlands J. T., Ross W., Gosink K. K., Gourse R. L. Factor-independent activation of Escherichia coli rRNA transcription. II. characterization of complexes of rrnB P1 promoters containing or lacking the upstream activator region with Escherichia coli RNA polymerase. J Mol Biol. 1991 Aug 5;220(3):569–583. doi: 10.1016/0022-2836(91)90101-b. [DOI] [PubMed] [Google Scholar]
  19. Powell B. S., Rivas M. P., Court D. L., Nakamura Y., Turnbough C. L., Jr Rapid confirmation of single copy lambda prophage integration by PCR. Nucleic Acids Res. 1994 Dec 25;22(25):5765–5766. doi: 10.1093/nar/22.25.5765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reznikoff W. S. The lactose operon-controlling elements: a complex paradigm. Mol Microbiol. 1992 Sep;6(17):2419–2422. doi: 10.1111/j.1365-2958.1992.tb01416.x. [DOI] [PubMed] [Google Scholar]
  21. Ross W., Gosink K. K., Salomon J., Igarashi K., Zou C., Ishihama A., Severinov K., Gourse R. L. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science. 1993 Nov 26;262(5138):1407–1413. doi: 10.1126/science.8248780. [DOI] [PubMed] [Google Scholar]
  22. Ryu S., Garges S., Adhya S. An arcane role of DNA in transcription activation. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8582–8586. doi: 10.1073/pnas.91.18.8582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Savery N. J., Rhodius V. A., Wing H. J., Busby S. J. Transcription activation at Escherichia coli promoters dependent on the cyclic AMP receptor protein: effects of binding sequences for the RNA polymerase alpha-subunit. Biochem J. 1995 Jul 1;309(Pt 1):77–83. doi: 10.1042/bj3090077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schulz V. P., Reznikoff W. S. In vitro secondary structure analysis of mRNA from lacZ translation initiation mutants. J Mol Biol. 1990 Jan 20;211(2):427–445. doi: 10.1016/0022-2836(90)90363-Q. [DOI] [PubMed] [Google Scholar]
  25. Shanblatt S. H., Revzin A. The binding of catabolite activator protein and RNA polymerase to the Escherichia coli galactose and lactose promoters probed by alkylation interference studies. J Biol Chem. 1986 Aug 15;261(23):10885–10890. [PubMed] [Google Scholar]
  26. Tang H., Severinov K., Goldfarb A., Fenyo D., Chait B., Ebright R. H. Location, structure, and function of the target of a transcriptional activator protein. Genes Dev. 1994 Dec 15;8(24):3058–3067. doi: 10.1101/gad.8.24.3058. [DOI] [PubMed] [Google Scholar]
  27. Ushida C., Aiba H. Helical phase dependent action of CRP: effect of the distance between the CRP site and the -35 region on promoter activity. Nucleic Acids Res. 1990 Nov 11;18(21):6325–6330. doi: 10.1093/nar/18.21.6325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Xiong X. F., de la Cruz N., Reznikoff W. S. Downstream deletion analysis of the lac promoter. J Bacteriol. 1991 Aug;173(15):4570–4577. doi: 10.1128/jb.173.15.4570-4577.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zou C., Fujita N., Igarashi K., Ishihama A. Mapping the cAMP receptor protein contact site on the alpha subunit of Escherichia coli RNA polymerase. Mol Microbiol. 1992 Sep;6(18):2599–2605. doi: 10.1111/j.1365-2958.1992.tb01437.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES