Abstract
We previously isolated three extracellular endogenous enzymes from a Streptomyces albogriseolus mutant strain which were targets of Streptomyces subtilisin inhibitor (SSI) (S. Taguchi, A. Odaka, Y. Watanabe, and H. Momose, Appl. Environ. Microbiol. 61:180-186, 1995). In the present study, of the three enzymes the largest one, with a molecular mass of 45 kDa (estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis), termed SAM-P45, has been characterized in detail. The entire gene encoding SAM-P45 was cloned as an approximately 10-kb fragment from S. albogriseolus S-3253 genomic DNA into an Escherichia coli host by using a shuttle plasmid vector. The amino acid sequence corresponding to the internal region of SAM-P45, deduced from the nucleotide sequence of the gene, revealed high homology, particularly in three regions around the active-site residues (Asp, His, and Ser), with the amino acid sequences of the mature domain of subtilisin-like serine proteases. In order to investigate the enzymatic properties of this protease, recombinant SAM-P45 was overproduced in Streptomyces coelicolor by using a strong SSI gene promoter. Sequence analysis of the SAM-P45 gene and peptide mapping of the purified SAM-P45 suggested that it is synthesized as a large precursor protein containing a large C-terminal prodomain (494 residues) in addition to an N-terminal preprodomain (23 and 172 residues). A high proportion of basic amino acids in the C-terminal prodomain was considered to serve an element interactive with the phospholipid bilayer existing in the C-terminal prodomain, as found in other membrane-anchoring proteases of gram-positive bacteria. It is noteworthy that SAM-P45 was found to prefer basic amino acids to aromatic or aliphatic amino acids in contrast to subtilisin BPN', which has a broad substrate specificity. The hydrolysis by SAM-P45 of the synthetic substrate (N-succinyl-L-Gly-L-Pro-L-Lys-p-nitroanilide) most preferred by this enzyme was inhibited by SSI, chymostatin, and EDTA. The proteolytic activity of SAM-P45 was stimulated by the divalent cations Ca2+ and Mg2+. From these findings, we conclude that SAM-P45 interacts with SSI and can be categorized as a novel member of the subtilisin-like serine protease family.
Full Text
The Full Text of this article is available as a PDF (366.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Appel L. F., Prout M., Abu-Shumays R., Hammonds A., Garbe J. C., Fristrom D., Fristrom J. The Drosophila Stubble-stubbloid gene encodes an apparent transmembrane serine protease required for epithelial morphogenesis. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4937–4941. doi: 10.1073/pnas.90.11.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barr P. J. Mammalian subtilisins: the long-sought dibasic processing endoproteases. Cell. 1991 Jul 12;66(1):1–3. doi: 10.1016/0092-8674(91)90129-m. [DOI] [PubMed] [Google Scholar]
- Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
- Bibb M. J., Cohen S. N. Gene expression in Streptomyces: construction and application of promoter-probe plasmid vectors in Streptomyces lividans. Mol Gen Genet. 1982;187(2):265–277. doi: 10.1007/BF00331128. [DOI] [PubMed] [Google Scholar]
- Binnie C., Butler M. J., Aphale J. S., Bourgault R., DiZonno M. A., Krygsman P., Liao L., Walczyk E., Malek L. T. Isolation and characterization of two genes encoding proteases associated with the mycelium of Streptomyces lividans 66. J Bacteriol. 1995 Nov;177(21):6033–6040. doi: 10.1128/jb.177.21.6033-6040.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butler M. J., Aphale J. S., Binnie C., DiZonno M. A., Krygsman P., Soltes G., Walczyk E., Malek L. T. Cloning and analysis of a gene from Streptomyces lividans 66 encoding a novel secreted protease exhibiting homology to subtilisin BPN'. Appl Microbiol Biotechnol. 1996 Mar;45(1-2):141–147. doi: 10.1007/s002530050662. [DOI] [PubMed] [Google Scholar]
- Gibb G. D., Strohl W. R. Physiological regulation of protease activity in Streptomyces peucetius. Can J Microbiol. 1988 Feb;34(2):187–190. doi: 10.1139/m88-034. [DOI] [PubMed] [Google Scholar]
- Ginther C. L. Sporulation and the production of serine protease and cephamycin C by Streptomyces lactamdurans. Antimicrob Agents Chemother. 1979 Apr;15(4):522–526. doi: 10.1128/aac.15.4.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glotzer M., Murray A. W., Kirschner M. W. Cyclin is degraded by the ubiquitin pathway. Nature. 1991 Jan 10;349(6305):132–138. doi: 10.1038/349132a0. [DOI] [PubMed] [Google Scholar]
- Hatsuzawa K., Nagahama M., Takahashi S., Takada K., Murakami K., Nakayama K. Purification and characterization of furin, a Kex2-like processing endoprotease, produced in Chinese hamster ovary cells. J Biol Chem. 1992 Aug 15;267(23):16094–16099. [PubMed] [Google Scholar]
- Kojima S., Terabe M., Taguchi S., Momose H., Miura K. Primary structure and inhibitory properties of a proteinase inhibitor produced by Streptomyces cacaoi. Biochim Biophys Acta. 1994 Jul 20;1207(1):120–125. doi: 10.1016/0167-4838(94)90060-4. [DOI] [PubMed] [Google Scholar]
- Kraut J. Serine proteases: structure and mechanism of catalysis. Annu Rev Biochem. 1977;46:331–358. doi: 10.1146/annurev.bi.46.070177.001555. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Molloy S. S., Bresnahan P. A., Leppla S. H., Klimpel K. R., Thomas G. Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem. 1992 Aug 15;267(23):16396–16402. [PubMed] [Google Scholar]
- Obata S., Taguchi S., Kumagai I., Miura K. Molecular cloning and nucleotide sequence determination of gene encoding Streptomyces subtilisin inhibitor (SSI). J Biochem. 1989 Mar;105(3):367–371. doi: 10.1093/oxfordjournals.jbchem.a122670. [DOI] [PubMed] [Google Scholar]
- Poulos T. L., Alden R. A., Freer S. T., Birktoft J. J., Kraut J. Polypeptide halomethyl ketones bind to serine proteases as analogs of the tetrahedral intermediate. X-ray crystallographic comparison of lysine- and phenylalanine-polypeptide chloromethyl ketone-inhibited subtilisin. J Biol Chem. 1976 Feb 25;251(4):1097–1103. [PubMed] [Google Scholar]
- Rufaut N. W., Brennan S. O., Hakes D. J., Dixon J. E., Birch N. P. Purification and characterization of the candidate prohormone-processing enzyme SPC3 produced in a mouse L cell line. J Biol Chem. 1993 Sep 25;268(27):20291–20298. [PubMed] [Google Scholar]
- SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
- Shikata S., Shimada K., Kataoka H., Horinouchi S., Beppu T. Detection of large COOH-terminal domains processed from the precursor of Serratia marcescens serine protease in the outer membrane of Escherichia coli. J Biochem. 1992 May;111(5):627–632. doi: 10.1093/oxfordjournals.jbchem.a123809. [DOI] [PubMed] [Google Scholar]
- Sidhu S. S., Kalmar G. B., Willis L. G., Borgford T. J. Streptomyces griseus protease C. A novel enzyme of the chymotrypsin superfamily. J Biol Chem. 1994 Aug 5;269(31):20167–20171. [PubMed] [Google Scholar]
- Siezen R. J., de Vos W. M., Leunissen J. A., Dijkstra B. W. Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases. Protein Eng. 1991 Oct;4(7):719–737. doi: 10.1093/protein/4.7.719. [DOI] [PubMed] [Google Scholar]
- Taguchi S., Kikuchi H., Kojima S., Kumagai I., Nakase T., Miura K., Momose H. High frequency of SSI-like protease inhibitors among Streptomyces. Biosci Biotechnol Biochem. 1993 Mar;57(3):522–524. doi: 10.1271/bbb.57.522. [DOI] [PubMed] [Google Scholar]
- Taguchi S., Kikuchi H., Suzuki M., Kojima S., Terabe M., Miura K., Nakase T., Momose H. Streptomyces subtilisin inhibitor-like proteins are distributed widely in streptomycetes. Appl Environ Microbiol. 1993 Dec;59(12):4338–4341. doi: 10.1128/aem.59.12.4338-4341.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taguchi S., Kojima S., Kumagai I., Ogawara H., Miura K., Momose H. Isolation and partial characterization of SSI-like protease inhibitors from Streptomyces. FEMS Microbiol Lett. 1992 Dec 1;78(2-3):293–297. doi: 10.1016/0378-1097(92)90043-n. [DOI] [PubMed] [Google Scholar]
- Taguchi S., Kojima S., Miura K., Momose H. Taxonomic characterization of closely related Streptomyces spp. based on the amino acid sequence analysis of protease inhibitor proteins. FEMS Microbiol Lett. 1996 Jan 15;135(2-3):169–173. doi: 10.1111/j.1574-6968.1996.tb07984.x. [DOI] [PubMed] [Google Scholar]
- Taguchi S., Kojima S., Terabe M., Miura K., Momose H. Comparative studies on the primary structures and inhibitory properties of subtilisin-trypsin inhibitors from Streptomyces. Eur J Biochem. 1994 Mar 15;220(3):911–918. doi: 10.1111/j.1432-1033.1994.tb18694.x. [DOI] [PubMed] [Google Scholar]
- Taguchi S., Nishiyama K., Kumagai I., Miura K. Analysis of transcriptional control regions in the Streptomyces subtilisin-inhibitor-encoding gene. Gene. 1989 Dec 14;84(2):279–286. doi: 10.1016/0378-1119(89)90501-5. [DOI] [PubMed] [Google Scholar]
- Taguchi S., Odaka A., Watanabe Y., Momose H. Molecular characterization of a gene encoding extracellular serine protease isolated from a subtilisin inhibitor-deficient mutant of Streptomyces albogriseolus S-3253. Appl Environ Microbiol. 1995 Jan;61(1):180–186. doi: 10.1128/aem.61.1.180-186.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taguchi S., Suzuki M., Kojima S., Miura K., Momose H. Streptomyces serine protease (SAM-P20): recombinant production, characterization, and interaction with endogenous protease inhibitor. J Bacteriol. 1995 Nov;177(22):6638–6643. doi: 10.1128/jb.177.22.6638-6643.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeuchi Y., Noguchi S., Satow Y., Kojima S., Kumagai I., Miura K., Nakamura K. T., Mitsui Y. Molecular recognition at the active site of subtilisin BPN': crystallographic studies using genetically engineered proteinaceous inhibitor SSI (Streptomyces subtilisin inhibitor). Protein Eng. 1991 Jun;4(5):501–508. doi: 10.1093/protein/4.5.501. [DOI] [PubMed] [Google Scholar]
- Terabe M., Kojima S., Taguchi S., Momose H., Miura K. A subtilisin inhibitor produced by Streptomyces bikiniensis possesses a glutamine residue at reactive site P1. J Biochem. 1995 Mar;117(3):609–613. doi: 10.1093/oxfordjournals.jbchem.a124752. [DOI] [PubMed] [Google Scholar]
- Terabe M., Kojima S., Taguchi S., Momose H., Miura K. New subtilisin-trypsin inhibitors produced by Streptomyces: primary structures and their relationship to other proteinase inhibitors from Streptomyces. Biochim Biophys Acta. 1996 Feb 8;1292(2):233–240. doi: 10.1016/0167-4838(95)00207-3. [DOI] [PubMed] [Google Scholar]
- Terabe M., Kojima S., Taguchi S., Momose H., Miura K. Primary structure and inhibitory properties of a subtilisin-chymotrypsin inhibitor from Streptomyces virginiae. Eur J Biochem. 1994 Dec 1;226(2):627–632. doi: 10.1111/j.1432-1033.1994.tb20089.x. [DOI] [PubMed] [Google Scholar]
- Terabe M., Kojima S., Taguchi S., Momose H., Miura K. Three novel subtilisin-trypsin inhibitors from Streptomyces: primary structures and inhibitory properties. J Biochem. 1994 Nov;116(5):1156–1163. doi: 10.1093/oxfordjournals.jbchem.a124643. [DOI] [PubMed] [Google Scholar]
- Uhlén M., Guss B., Nilsson B., Gatenbeck S., Philipson L., Lindberg M. Complete sequence of the staphylococcal gene encoding protein A. A gene evolved through multiple duplications. J Biol Chem. 1984 Feb 10;259(3):1695–1702. [PubMed] [Google Scholar]
- Umezawa H. Low-molecular-weight enzyme inhibitors of microbial origin. Annu Rev Microbiol. 1982;36:75–99. doi: 10.1146/annurev.mi.36.100182.000451. [DOI] [PubMed] [Google Scholar]
- Vos P., Simons G., Siezen R. J., de Vos W. M. Primary structure and organization of the gene for a procaryotic, cell envelope-located serine proteinase. J Biol Chem. 1989 Aug 15;264(23):13579–13585. [PubMed] [Google Scholar]
- Watanabe T., Murakami K., Nakayama K. Positional and additive effects of basic amino acids on processing of precursor proteins within the constitutive secretory pathway. FEBS Lett. 1993 Apr 12;320(3):215–218. doi: 10.1016/0014-5793(93)80589-m. [DOI] [PubMed] [Google Scholar]
- Wells J. A., Cunningham B. C., Graycar T. P., Estell D. A. Recruitment of substrate-specificity properties from one enzyme into a related one by protein engineering. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5167–5171. doi: 10.1073/pnas.84.15.5167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wells J. A., Ferrari E., Henner D. J., Estell D. A., Chen E. Y. Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucleic Acids Res. 1983 Nov 25;11(22):7911–7925. doi: 10.1093/nar/11.22.7911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wells J. A., Powers D. B., Bott R. R., Graycar T. P., Estell D. A. Designing substrate specificity by protein engineering of electrostatic interactions. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1219–1223. doi: 10.1073/pnas.84.5.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright F., Bibb M. J. Codon usage in the G+C-rich Streptomyces genome. Gene. 1992 Apr 1;113(1):55–65. doi: 10.1016/0378-1119(92)90669-g. [DOI] [PubMed] [Google Scholar]
- von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]