Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jan;179(2):563–566. doi: 10.1128/jb.179.2.563-566.1997

Occurrence and biosynthesis of 5-aminoimidazole-4-carboxamide ribonucleotide and N-(beta-D-ribofuranosyl)formamide 5'-phosphate in Methanobacterium thermoautotrophicum delta(H).

R H White 1
PMCID: PMC178732  PMID: 8990314

Abstract

5-Aminoimidazole-4-carboxamide ribonucleotide (ZMP) and N-(beta-D-ribofuranosyl)formamide 5'-phosphate (FAR-P) have been identified as products of the metabolism of ATP and 5-phospho-alpha-D-ribosyl diphosphate by Methanobacterium thermoautotrophicum delta(H), a member of the domain Archaea. Evidence indicates that the first three steps in the pathway to the formation of these compounds are the same as the first three steps of histidine biosynthesis and lead to the generation of pro-phosphoribosyl formimino-5-aminoimidazole-4-carboxamide ribonucleotide (5'-proFAR). The 5'-proFAR then undergoes hydrolysis to ZMP and FAR-P. The reaction was detected by an unexpected high concentration of ZMP in cell extracts of M. thermoautotrophicum delta(H).

Full Text

The Full Text of this article is available as a PDF (186.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., MARTIN R. G., GARRY B. J. The first step of histidine biosynthesis. J Biol Chem. 1961 Jul;236:2019–2026. [PubMed] [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. Methanogens: reevaluation of a unique biological group. Microbiol Rev. 1979 Jun;43(2):260–296. doi: 10.1128/mr.43.2.260-296.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bochner B. R., Ames B. N. ZTP (5-amino 4-imidazole carboxamide riboside 5'-triphosphate): a proposed alarmone for 10-formyl-tetrahydrofolate deficiency. Cell. 1982 Jul;29(3):929–937. doi: 10.1016/0092-8674(82)90455-x. [DOI] [PubMed] [Google Scholar]
  4. Leckie M. P., Porter S. E., Tieber V. L., Dietzler D. N. Regulation of the basal and cyclic AMP-stimulated rates of glycogen synthesis in Escherichia coli by an intermediate of purine biosynthesis. Biochem Biophys Res Commun. 1981 Apr 30;99(4):1433–1442. doi: 10.1016/0006-291x(81)90779-8. [DOI] [PubMed] [Google Scholar]
  5. Rohlman C. E., Matthews R. G. Role of purine biosynthetic intermediates in response to folate stress in Escherichia coli. J Bacteriol. 1990 Dec;172(12):7200–7210. doi: 10.1128/jb.172.12.7200-7210.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. SMITH D. W., AMES B. N. INTERMEDIATES IN THE EARLY STEPS OF HISTIDINE BIOSYNTHESIS. J Biol Chem. 1964 Jun;239:1848–1855. [PubMed] [Google Scholar]
  7. Schendel F. J., Cheng Y. S., Otvos J. D., Wehrli S., Stubbe J. Characterization and chemical properties of phosphoribosylamine, an unstable intermediate in the de novo purine biosynthetic pathway. Biochemistry. 1988 Apr 5;27(7):2614–2623. doi: 10.1021/bi00407a052. [DOI] [PubMed] [Google Scholar]
  8. White R. H. Biosynthesis of methanopterin. Biochemistry. 1996 Mar 19;35(11):3447–3456. doi: 10.1021/bi952308m. [DOI] [PubMed] [Google Scholar]
  9. White R. H. Distribution of folates and modified folates in extremely thermophilic bacteria. J Bacteriol. 1991 Mar;173(6):1987–1991. doi: 10.1128/jb.173.6.1987-1991.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES