Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Feb;179(3):601–611. doi: 10.1128/jb.179.3.601-611.1997

Linker mutagenesis of the Caulobacter crescentus S-layer protein: toward a definition of an N-terminal anchoring region and a C-terminal secretion signal and the potential for heterologous protein secretion.

W H Bingle 1, J F Nomellini 1, J Smit 1
PMCID: PMC178737  PMID: 9006010

Abstract

Linker insertion mutagenesis was used to modify the paracrystalline surface layer (S-layer) protein (RsaA) of the gram-negative bacterium Caulobacter crescentus. Eleven unique BamHI linker insertions in the cloned rsaA gene were identified; at the protein level, these linker insertions introduced 4 to 6 amino acids at positions ranging from the extreme N terminus to the extreme C terminus of the 1,026-amino-acid RsaA protein. All linker-peptide insertions in the RsaA N terminus caused the secreted protein to be shed into the growth medium, suggesting that the RsaA N terminus is involved in cell surface anchoring. One linker-peptide insertion in the RsaA C terminus (amino acid 784) had no effect on S-layer biogenesis, while another (amino acid 907) disrupted secretion of the protein, suggesting that RsaA possesses a secretion signal lying C terminal to amino acid 784, near or including amino acid 907. Unlike extreme N- or C-terminal linker-peptide insertions, those more centrally located in the RsaA primary sequence had no apparent effect on S-layer biogenesis. By using a newly introduced linker-encoded restriction site, a 3' fragment of the rsaA gene encoding the last 242 C-terminal amino acids of the S-layer protein was expressed in C. crescentus from heterologous Escherichia coli lacZ transcription and translation initiation information. This C-terminal portion of RsaA was secreted into the growth medium, confirming the presence of a C-terminal secretion signal. The use of the RsaA C terminus for the secretion of heterologous proteins in C. crescentus was explored by fusing 109 amino acids of an envelope glycoprotein from infectious hematopoietic necrosis virus, a pathogen of salmonid fish, to the last 242 amino acids of the RsaA C terminus. The resulting hybrid protein was successfully secreted into the growth medium and accounted for 10% of total protein in a stationary-phase culture. Based on these results and features of the RsaA primary sequence, we propose that the C. crescentus S-layer protein is secreted by a type I secretion system, relying on a stable C-terminal secretion signal in a manner analogous to E. coli alpha-hemolysin, the first example of an S-layer protein secreted by such a pathway.

Full Text

The Full Text of this article is available as a PDF (382.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akatsuka H., Kawai E., Omori K., Shibatani T. The three genes lipB, lipC, and lipD involved in the extracellular secretion of the Serratia marcescens lipase which lacks an N-terminal signal peptide. J Bacteriol. 1995 Nov;177(22):6381–6389. doi: 10.1128/jb.177.22.6381-6389.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bagdasarian M., Lurz R., Rückert B., Franklin F. C., Bagdasarian M. M., Frey J., Timmis K. N. Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene. 1981 Dec;16(1-3):237–247. doi: 10.1016/0378-1119(81)90080-9. [DOI] [PubMed] [Google Scholar]
  3. Barany F. Single-stranded hexameric linkers: a system for in-phase insertion mutagenesis and protein engineering. Gene. 1985;37(1-3):111–123. doi: 10.1016/0378-1119(85)90263-x. [DOI] [PubMed] [Google Scholar]
  4. Bingle W. H., Engelhardt H., Page W. J., Baumeister W. Three-dimensional structure of the regular tetragonal surface layer of Azotobacter vinelandii. J Bacteriol. 1987 Nov;169(11):5008–5015. doi: 10.1128/jb.169.11.5008-5015.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bingle W. H., Kurtz H. D., Jr, Smit J. An "all-purpose" cellulase reporter for gene fusion studies and application to the paracrystalline surface (S)-layer protein of Caulobacter crescentus. Can J Microbiol. 1993 Jan;39(1):70–80. doi: 10.1139/m93-010. [DOI] [PubMed] [Google Scholar]
  6. Bingle W. H., Le K. D., Smit J. The extreme N-terminus of the Caulobacter crescentus surface-layer protein directs export of passenger proteins from the cytoplasm but is not required for secretion of the native protein. Can J Microbiol. 1996 Jul;42(7):672–684. doi: 10.1139/m96-092. [DOI] [PubMed] [Google Scholar]
  7. Bingle W. H., Smit J. A method of tagging specific-purpose linkers with an antibiotic-resistance gene for linker mutagenesis using a selectable marker. Biotechniques. 1991 Feb;10(2):150–152. [PubMed] [Google Scholar]
  8. Bingle W. H., Smit J. Alkaline phosphatase and a cellulase reporter protein are not exported from the cytoplasm when fused to large N-terminal portions of the Caulobacter crescentus surface (S)-layer protein. Can J Microbiol. 1994 Sep;40(9):777–782. doi: 10.1139/m94-122. [DOI] [PubMed] [Google Scholar]
  9. Bingle W. H., Smit J. High-level expression vectors for Caulobacter crescentus incorporating the transcription/translation initiation regions of the paracrystalline surface-layer-protein gene. Plasmid. 1990 Sep;24(2):143–148. doi: 10.1016/0147-619x(90)90016-6. [DOI] [PubMed] [Google Scholar]
  10. Bingle W. H., Whippey P. W., Doran J. L., Murray R. G., Page W. J. Structure of the Azotobacter vinelandii surface layer. J Bacteriol. 1987 Feb;169(2):802–810. doi: 10.1128/jb.169.2.802-810.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Blaser M. J., Gotschlich E. C. Surface array protein of Campylobacter fetus. Cloning and gene structure. J Biol Chem. 1990 Aug 25;265(24):14529–14535. [PubMed] [Google Scholar]
  12. Blight M. A., Chervaux C., Holland I. B. Protein secretion pathway in Escherichia coli. Curr Opin Biotechnol. 1994 Oct;5(5):468–474. doi: 10.1016/0958-1669(94)90059-0. [DOI] [PubMed] [Google Scholar]
  13. Blight M. A., Holland I. B. Heterologous protein secretion and the versatile Escherichia coli haemolysin translocator. Trends Biotechnol. 1994 Nov;12(11):450–455. doi: 10.1016/0167-7799(94)90020-5. [DOI] [PubMed] [Google Scholar]
  14. Boot H. J., Pouwels P. H. Expression, secretion and antigenic variation of bacterial S-layer proteins. Mol Microbiol. 1996 Sep;21(6):1117–1123. doi: 10.1046/j.1365-2958.1996.711442.x. [DOI] [PubMed] [Google Scholar]
  15. Brent R., Ptashne M. The lexA gene product represses its own promoter. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1932–1936. doi: 10.1073/pnas.77.4.1932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Chervaux C., Holland I. B. Random and directed mutagenesis to elucidate the functional importance of helix II and F-989 in the C-terminal secretion signal of Escherichia coli hemolysin. J Bacteriol. 1996 Feb;178(4):1232–1236. doi: 10.1128/jb.178.4.1232-1236.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Chu S., Cavaignac S., Feutrier J., Phipps B. M., Kostrzynska M., Kay W. W., Trust T. J. Structure of the tetragonal surface virulence array protein and gene of Aeromonas salmonicida. J Biol Chem. 1991 Aug 15;266(23):15258–15265. [PubMed] [Google Scholar]
  18. Doig P., McCubbin W. D., Kay C. M., Trust T. J. Distribution of surface-exposed and non-accessible amino acid sequences among the two major structural domains of the S-layer protein of Aeromonas salmonicida. J Mol Biol. 1993 Oct 20;233(4):753–765. doi: 10.1006/jmbi.1993.1550. [DOI] [PubMed] [Google Scholar]
  19. Dooley J. S., McCubbin W. D., Kay C. M., Trust T. J. Isolation and biochemical characterization of the S-layer protein from a pathogenic Aeromonas hydrophila strain. J Bacteriol. 1988 Jun;170(6):2631–2638. doi: 10.1128/jb.170.6.2631-2638.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Duong F., Lazdunski A., Cami B., Murgier M. Sequence of a cluster of genes controlling synthesis and secretion of alkaline protease in Pseudomonas aeruginosa: relationships to other secretory pathways. Gene. 1992 Nov 2;121(1):47–54. doi: 10.1016/0378-1119(92)90160-q. [DOI] [PubMed] [Google Scholar]
  21. Duong F., Soscia C., Lazdunski A., Murgier M. The Pseudomonas fluorescens lipase has a C-terminal secretion signal and is secreted by a three-component bacterial ABC-exporter system. Mol Microbiol. 1994 Mar;11(6):1117–1126. doi: 10.1111/j.1365-2958.1994.tb00388.x. [DOI] [PubMed] [Google Scholar]
  22. Dworkin J., Tummuru M. K., Blaser M. J. A lipopolysaccharide-binding domain of the Campylobacter fetus S-layer protein resides within the conserved N terminus of a family of silent and divergent homologs. J Bacteriol. 1995 Apr;177(7):1734–1741. doi: 10.1128/jb.177.7.1734-1741.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ertesvåg H., Doseth B., Larsen B., Skjåk-Braek G., Valla S. Cloning and expression of an Azotobacter vinelandii mannuronan C-5-epimerase gene. J Bacteriol. 1994 May;176(10):2846–2853. doi: 10.1128/jb.176.10.2846-2853.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Fath M. J., Skvirsky R. C., Kolter R. Functional complementation between bacterial MDR-like export systems: colicin V, alpha-hemolysin, and Erwinia protease. J Bacteriol. 1991 Dec;173(23):7549–7556. doi: 10.1128/jb.173.23.7549-7556.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Garduño R. A., Phipps B. M., Kay W. W. Physical and functional S-layer reconstitution in Aeromonas salmonicida. J Bacteriol. 1995 May;177(10):2684–2694. doi: 10.1128/jb.177.10.2684-2694.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gilchrist A., Fisher J. A., Smit J. Nucleotide sequence analysis of the gene encoding the Caulobacter crescentus paracrystalline surface layer protein. Can J Microbiol. 1992 Mar;38(3):193–202. doi: 10.1139/m92-033. [DOI] [PubMed] [Google Scholar]
  27. Gilchrist A., Smit J. Transformation of freshwater and marine caulobacters by electroporation. J Bacteriol. 1991 Jan;173(2):921–925. doi: 10.1128/jb.173.2.921-925.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Gilson L., Mahanty H. K., Kolter R. Genetic analysis of an MDR-like export system: the secretion of colicin V. EMBO J. 1990 Dec;9(12):3875–3884. doi: 10.1002/j.1460-2075.1990.tb07606.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Higgins C. F. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113. doi: 10.1146/annurev.cb.08.110192.000435. [DOI] [PubMed] [Google Scholar]
  30. Hovmöller S., Sjögren A., Wang D. N. The structure of crystalline bacterial surface layers. Prog Biophys Mol Biol. 1988;51(2):131–163. doi: 10.1016/0079-6107(88)90012-0. [DOI] [PubMed] [Google Scholar]
  31. Håvarstein L. S., Diep D. B., Nes I. F. A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol. 1995 Apr;16(2):229–240. doi: 10.1111/j.1365-2958.1995.tb02295.x. [DOI] [PubMed] [Google Scholar]
  32. Håvarstein L. S., Holo H., Nes I. F. The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by gram-positive bacteria. Microbiology. 1994 Sep;140(Pt 9):2383–2389. doi: 10.1099/13500872-140-9-2383. [DOI] [PubMed] [Google Scholar]
  33. Koval S. F., Hynes S. H. Effect of paracrystalline protein surface layers on predation by Bdellovibrio bacteriovorus. J Bacteriol. 1991 Apr;173(7):2244–2249. doi: 10.1128/jb.173.7.2244-2249.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lupas A., Engelhardt H., Peters J., Santarius U., Volker S., Baumeister W. Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J Bacteriol. 1994 Mar;176(5):1224–1233. doi: 10.1128/jb.176.5.1224-1233.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Létoffé S., Ghigo J. M., Wandersman C. Secretion of the Serratia marcescens HasA protein by an ABC transporter. J Bacteriol. 1994 Sep;176(17):5372–5377. doi: 10.1128/jb.176.17.5372-5377.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Létoffé S., Wandersman C. Secretion of CyaA-PrtB and HlyA-PrtB fusion proteins in Escherichia coli: involvement of the glycine-rich repeat domain of Erwinia chrysanthemi protease B. J Bacteriol. 1992 Aug;174(15):4920–4927. doi: 10.1128/jb.174.15.4920-4927.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  38. Olabarría G., Carrascosa J. L., de Pedro M. A., Berenguer J. A conserved motif in S-layer proteins is involved in peptidoglycan binding in Thermus thermophilus. J Bacteriol. 1996 Aug;178(16):4765–4772. doi: 10.1128/jb.178.16.4765-4772.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Paddock G. V. Rapid colony hybridization on Whatman 541 paper using oligonucleotide probes. Methods Enzymol. 1993;217:340–346. doi: 10.1016/0076-6879(93)17075-g. [DOI] [PubMed] [Google Scholar]
  40. Phipps B. M., Trust T. J., Ishiguro E. E., Kay W. W. Purification and characterization of the cell surface virulent A protein from Aeromonas salmonicida. Biochemistry. 1983 Jun 7;22(12):2934–2939. doi: 10.1021/bi00281a023. [DOI] [PubMed] [Google Scholar]
  41. Pugsley A. P. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev. 1993 Mar;57(1):50–108. doi: 10.1128/mr.57.1.50-108.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Quigley N. B., Reeves P. R. Chloramphenicol resistance cloning vector based on pUC9. Plasmid. 1987 Jan;17(1):54–57. doi: 10.1016/0147-619x(87)90008-4. [DOI] [PubMed] [Google Scholar]
  43. Salmond G. P., Reeves P. J. Membrane traffic wardens and protein secretion in gram-negative bacteria. Trends Biochem Sci. 1993 Jan;18(1):7–12. doi: 10.1016/0968-0004(93)90080-7. [DOI] [PubMed] [Google Scholar]
  44. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sasakawa C., Yoshikawa M. A series of Tn5 variants with various drug-resistance markers and suicide vector for transposon mutagenesis. Gene. 1987;56(2-3):283–288. doi: 10.1016/0378-1119(87)90145-4. [DOI] [PubMed] [Google Scholar]
  46. Sawadogo M., Van Dyke M. W. A rapid method for the purification of deprotected oligodeoxynucleotides. Nucleic Acids Res. 1991 Feb 11;19(3):674–674. doi: 10.1093/nar/19.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Smit J., Agabian N. Cloning of the major protein of the Caulobacter crescentus periodic surface layer: detection and characterization of the cloned peptide by protein expression assays. J Bacteriol. 1984 Dec;160(3):1137–1145. doi: 10.1128/jb.160.3.1137-1145.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Smit J., Engelhardt H., Volker S., Smith S. H., Baumeister W. The S-layer of Caulobacter crescentus: three-dimensional image reconstruction and structure analysis by electron microscopy. J Bacteriol. 1992 Oct;174(20):6527–6538. doi: 10.1128/jb.174.20.6527-6538.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Thomas S. R., Trust T. J. A specific PulD homolog is required for the secretion of paracrystalline surface array subunits in Aeromonas hydrophila. J Bacteriol. 1995 Jul;177(14):3932–3939. doi: 10.1128/jb.177.14.3932-3939.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Thomas S. R., Trust T. J. Tyrosine phosphorylation of the tetragonal paracrystalline array of Aeromonas hydrophila: molecular cloning and high-level expression of the S-layer protein gene. J Mol Biol. 1995 Feb 3;245(5):568–581. doi: 10.1006/jmbi.1994.0047. [DOI] [PubMed] [Google Scholar]
  51. Thomas S., Austin J. W., McCubbin W. D., Kay C. M., Trust T. J. Roles of structural domains in the morphology and surface anchoring of the tetragonal paracrystalline array of Aeromonas hydrophila. Biochemical characterization of the major structural domain. J Mol Biol. 1992 Nov 20;228(2):652–661. doi: 10.1016/0022-2836(92)90847-d. [DOI] [PubMed] [Google Scholar]
  52. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  53. Walker S. G., Karunaratne D. N., Ravenscroft N., Smit J. Characterization of mutants of Caulobacter crescentus defective in surface attachment of the paracrystalline surface layer. J Bacteriol. 1994 Oct;176(20):6312–6323. doi: 10.1128/jb.176.20.6312-6323.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Walker S. G., Smith S. H., Smit J. Isolation and comparison of the paracrystalline surface layer proteins of freshwater caulobacters. J Bacteriol. 1992 Mar;174(6):1783–1792. doi: 10.1128/jb.174.6.1783-1792.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Xu L., Mourich D. V., Engelking H. M., Ristow S., Arnzen J., Leong J. C. Epitope mapping and characterization of the infectious hematopoietic necrosis virus glycoprotein, using fusion proteins synthesized in Escherichia coli. J Virol. 1991 Mar;65(3):1611–1615. doi: 10.1128/jvi.65.3.1611-1615.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Yamagata H., Nakahama K., Suzuki Y., Kakinuma A., Tsukagoshi N., Udaka S. Use of Bacillus brevis for efficient synthesis and secretion of human epidermal growth factor. Proc Natl Acad Sci U S A. 1989 May;86(10):3589–3593. doi: 10.1073/pnas.86.10.3589. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES