Abstract
Anaerobic assays conducted with strain T, a denitrifying bacterium capable of mineralizing toluene to carbon dioxide, demonstrated that toluene-grown, permeabilized cells catalyzed the addition of toluene to fumarate to form benzylsuccinate. This reaction was not dependent on the presence of coenzyme A (CoA) or ATP. In the presence of CoA, formation of E-phenylitaconate from benzylsuccinate was also observed. Kinetic studies demonstrated that the specific rate of benzylsuccinate formation from toluene and fumarate in assays with permeabilized cells was >30% of the specific rate of toluene consumption in whole-cell suspensions with nitrate; this observation suggests that benzylsuccinate formation may be the first reaction in anaerobic toluene degradation by strain T. Use of deuterium-labeled toluene and gas chromatography-mass spectrometry indicated that the H atom abstracted from the toluene methyl group during addition to fumarate was retained in the succinyl moiety of benzylsuccinate. In this study, no evidence was found to support previously proposed reactions of toluene with acetyl-CoA or succinyl-CoA. Toluene-grown, permeabilized cells of strain T also catalyzed the addition of o-xylene to fumarate to form (2-methylbenzyl)succinate. o-Xylene is not a growth substrate for strain T, and its transformation was probably cometabolic. With the exception of specific reaction rates, the observed characteristics of the toluene-fumarate addition reaction (i.e., retention of a methyl H atom and independence from CoA and ATP) also apply to the o-xylene-fumarate addition reaction. Thus, addition to fumarate may be a biochemical strategy to anaerobically activate a range of methylbenzenes.
Full Text
The Full Text of this article is available as a PDF (207.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altenschmidt U., Fuchs G. Anaerobic degradation of toluene in denitrifying Pseudomonas sp.: indication for toluene methylhydroxylation and benzoyl-CoA as central aromatic intermediate. Arch Microbiol. 1991;156(2):152–158. doi: 10.1007/BF00290990. [DOI] [PubMed] [Google Scholar]
- Altenschmidt U., Fuchs G. Anaerobic toluene oxidation to benzyl alcohol and benzaldehyde in a denitrifying Pseudomonas strain. J Bacteriol. 1992 Jul;174(14):4860–4862. doi: 10.1128/jb.174.14.4860-4862.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beller H. R., Reinhard M., Grbić-Galić D. Metabolic by-products of anaerobic toluene degradation by sulfate-reducing enrichment cultures. Appl Environ Microbiol. 1992 Sep;58(9):3192–3195. doi: 10.1128/aem.58.9.3192-3195.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beller H. R., Spormann A. M., Sharma P. K., Cole J. R., Reinhard M. Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium. Appl Environ Microbiol. 1996 Apr;62(4):1188–1196. doi: 10.1128/aem.62.4.1188-1196.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biegert T., Fuchs G., Heider J. Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate. Eur J Biochem. 1996 Jun 15;238(3):661–668. doi: 10.1111/j.1432-1033.1996.0661w.x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chee-Sanford J. C., Frost J. W., Fries M. R., Zhou J., Tiedje J. M. Evidence for acetyl coenzyme A and cinnamoyl coenzyme A in the anaerobic toluene mineralization pathway in Azoarcus tolulyticus Tol-4. Appl Environ Microbiol. 1996 Mar;62(3):964–973. doi: 10.1128/aem.62.3.964-973.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dolfing J., Zeyer J., Binder-Eicher P., Schwarzenbach R. P. Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen. Arch Microbiol. 1990;154(4):336–341. doi: 10.1007/BF00276528. [DOI] [PubMed] [Google Scholar]
- Edwards E. A., Grbić-Galić D. Anaerobic degradation of toluene and o-xylene by a methanogenic consortium. Appl Environ Microbiol. 1994 Jan;60(1):313–322. doi: 10.1128/aem.60.1.313-322.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans P. J., Ling W., Goldschmidt B., Ritter E. R., Young L. Y. Metabolites formed during anaerobic transformation of toluene and o-xylene and their proposed relationship to the initial steps of toluene mineralization. Appl Environ Microbiol. 1992 Feb;58(2):496–501. doi: 10.1128/aem.58.2.496-501.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans P. J., Mang D. T., Kim K. S., Young L. Y. Anaerobic degradation of toluene by a denitrifying bacterium. Appl Environ Microbiol. 1991 Apr;57(4):1139–1145. doi: 10.1128/aem.57.4.1139-1145.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frazer A. C., Ling W., Young L. Y. Substrate induction and metabolite accumulation during anaerobic toluene utilization by the denitrifying strain T1. Appl Environ Microbiol. 1993 Sep;59(9):3157–3160. doi: 10.1128/aem.59.9.3157-3160.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fries M. R., Zhou J., Chee-Sanford J., Tiedje J. M. Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl Environ Microbiol. 1994 Aug;60(8):2802–2810. doi: 10.1128/aem.60.8.2802-2810.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grbić-Galić D., Vogel T. M. Transformation of toluene and benzene by mixed methanogenic cultures. Appl Environ Microbiol. 1987 Feb;53(2):254–260. doi: 10.1128/aem.53.2.254-260.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lovley D. R., Lonergan D. J. Anaerobic Oxidation of Toluene, Phenol, and p-Cresol by the Dissimilatory Iron-Reducing Organism, GS-15. Appl Environ Microbiol. 1990 Jun;56(6):1858–1864. doi: 10.1128/aem.56.6.1858-1864.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Migaud M. E., Chee-Sanford J. C., Tiedje J. M., Frost J. W. Benzylfumaric, benzylmaleic, and Z- and E-phenylitaconic acids: synthesis, characterization, and correlation with a metabolite generated by Azoarcus tolulyticus Tol-4 during anaerobic toluene degradation. Appl Environ Microbiol. 1996 Mar;62(3):974–978. doi: 10.1128/aem.62.3.974-978.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabus R., Nordhaus R., Ludwig W., Widdel F. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol. 1993 May;59(5):1444–1451. doi: 10.1128/aem.59.5.1444-1451.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabus R., Widdel F. Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol. 1995 Feb;163(2):96–103. doi: 10.1007/BF00381782. [DOI] [PubMed] [Google Scholar]
- Schocher R. J., Seyfried B., Vazquez F., Zeyer J. Anaerobic degradation of toluene by pure cultures of denitrifying bacteria. Arch Microbiol. 1991;157(1):7–12. doi: 10.1007/BF00245327. [DOI] [PubMed] [Google Scholar]
- Seyfried B., Glod G., Schocher R., Tschech A., Zeyer J. Initial reactions in the anaerobic oxidation of toluene and m-xylene by denitrifying bacteria. Appl Environ Microbiol. 1994 Nov;60(11):4047–4052. doi: 10.1128/aem.60.11.4047-4052.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogel T. M., Grbìc-Galìc D. Incorporation of Oxygen from Water into Toluene and Benzene during Anaerobic Fermentative Transformation. Appl Environ Microbiol. 1986 Jul;52(1):200–202. doi: 10.1128/aem.52.1.200-202.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
