Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Feb;179(3):697–704. doi: 10.1128/jb.179.3.697-704.1997

Purification of peptide synthetases involved in pristinamycin I biosynthesis.

D Thibaut 1, D Bisch 1, N Ratet 1, L Maton 1, M Couder 1, L Debussche 1, F Blanche 1
PMCID: PMC178750  PMID: 9006023

Abstract

Several assays of pristinamycin I synthetases based on adenylate or thioester formation were developed. Purification to near homogeneity of these enzymatic activities from cell extracts of Streptomyces pristinaespiralis showed that three enzymes could activate all pristinamycin I precursors. SnbA, a 3-hydroxypicolinic acid: AMP ligase activating the first pristinamycin I residue, was purified 200-fold, using an ATP-pyrophosphate exchange assay. This enzyme was shown to be a monomer with an Mr of 67,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Then a multifunctional enzyme, consisting of two identical subunits (SnbC) with Mrs of 240,000 and able to bind covalently L-threonine as a thioester, was purified 100-fold. This protein also activated L-aminobutyric acid, which is further epimerized to generate the third residue of the pristinamycin I macrocycle. A third protein, consisting of two identical subunits (SnbD) with Mrs estimated to be between 250,000 and 350,000, was purified 200-fold. This large enzyme catalyzed thioesterification and subsequent N-methylation of 4-dimethylamino-L-phenylalanine, the fifth pristinamycin I residue. SnbD could also activate L-proline, the fourth pristinamycin I residue, and some preparations retained a low but significant activity for the last two pristinamycin I precursors. Finally, a single polypeptide chain (SnbE) with an Mr of 170,000, catalyzing L-phenylglycine-dependent ATP-pyrophosphate exchange, was purified 3,000-fold and characterized. Stepwise Edman degradation of the entire polypeptides or some of their internal fragments provided amino acid sequences for the four isolated proteins. The purified SnbE protein was further shown to be a proteolytic fragment of SnbD.

Full Text

The Full Text of this article is available as a PDF (242.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blanc V., Gil P., Bamas-Jacques N., Lorenzon S., Zagorec M., Schleuniger J., Bisch D., Blanche F., Debussche L., Crouzet J. Identification and analysis of genes from Streptomyces pristinaespiralis encoding enzymes involved in the biosynthesis of the 4-dimethylamino-L-phenylalanine precursor of pristinamycin I. Mol Microbiol. 1997 Jan;23(2):191–202. doi: 10.1046/j.1365-2958.1997.2031574.x. [DOI] [PubMed] [Google Scholar]
  2. Blanc V., Lagneaux D., Didier P., Gil P., Lacroix P., Crouzet J. Cloning and analysis of structural genes from Streptomyces pristinaespiralis encoding enzymes involved in the conversion of pristinamycin IIB to pristinamycin IIA (PIIA): PIIA synthase and NADH:riboflavin 5'-phosphate oxidoreductase. J Bacteriol. 1995 Sep;177(18):5206–5214. doi: 10.1128/jb.177.18.5206-5214.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cocito C. Antibiotics of the virginiamycin family, inhibitors which contain synergistic components. Microbiol Rev. 1979 Jun;43(2):145–192. doi: 10.1128/mr.43.2.145-192.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crooy P., De Neys R. Virginiamycin: nomenclature. J Antibiot (Tokyo) 1972 Jun;25(6):371–372. doi: 10.7164/antibiotics.25.371. [DOI] [PubMed] [Google Scholar]
  5. De Crécy-Lagard V., Marlière P., Saurin W. Multienzymatic non ribosomal peptide biosynthesis: identification of the functional domains catalysing peptide elongation and epimerisation. C R Acad Sci III. 1995 Sep;318(9):927–936. [PubMed] [Google Scholar]
  6. Ferrari P., Vékey K., Galimberti M., Gallo G. G., Selva E., Zerilli L. F. Antibiotics A21459 A and B, new inhibitors of bacterial protein synthesis. II. Structure elucidation. J Antibiot (Tokyo) 1996 Feb;49(2):150–154. doi: 10.7164/antibiotics.49.150. [DOI] [PubMed] [Google Scholar]
  7. Gevers W., Kleinkauf H., Lipmann F. Peptidyl transfers in gramicidin S bisoynthesis from enzyme-bound thioester intermediates. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1335–1342. doi: 10.1073/pnas.63.4.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Glund K., Schlumbohm W., Bapat M., Keller U. Biosynthesis of quinoxaline antibiotics: purification and characterization of the quinoxaline-2-carboxylic acid activating enzyme from Streptomyces triostinicus. Biochemistry. 1990 Apr 10;29(14):3522–3527. doi: 10.1021/bi00466a015. [DOI] [PubMed] [Google Scholar]
  9. Keller U. Actinomycin synthetases. Multifunctional enzymes responsible for the synthesis of the peptide chains of actinomycin. J Biol Chem. 1987 Apr 25;262(12):5852–5856. [PubMed] [Google Scholar]
  10. Keller U., Kleinkauf H., Zocher R. 4-Methyl-3-hydroxyanthranilic acid activating enzyme from actinomycin-producing Streptomyces chrysomallus. Biochemistry. 1984 Mar 27;23(7):1479–1484. doi: 10.1021/bi00302a022. [DOI] [PubMed] [Google Scholar]
  11. Keller U., Schlumbohm W. Purification and characterization of actinomycin synthetase I, a 4-methyl-3-hydroxyanthranilic acid-AMP ligase from Streptomyces chrysomallus. J Biol Chem. 1992 Jun 15;267(17):11745–11752. [PubMed] [Google Scholar]
  12. Kleinkauf H., von Döhren H. Nonribosomal biosynthesis of peptide antibiotics. Eur J Biochem. 1990 Aug 28;192(1):1–15. doi: 10.1111/j.1432-1033.1990.tb19188.x. [DOI] [PubMed] [Google Scholar]
  13. Lipmann F. Attempts to map a process evolution of peptide biosynthesis. Science. 1971 Sep 3;173(4000):875–884. doi: 10.1126/science.173.4000.875. [DOI] [PubMed] [Google Scholar]
  14. Nielsen J. B., Hsu M. J., Byrne K. M., Kaplan L. Biosynthesis of the immunosuppressant immunomycin: the enzymology of pipecolate incorporation. Biochemistry. 1991 Jun 11;30(23):5789–5796. doi: 10.1021/bi00237a023. [DOI] [PubMed] [Google Scholar]
  15. PREUDHOMME J., BELLOC A., CHARPENTIE Y., TARRIDEC P. UN ANTIBIOTIQUE FORM'E DE DEUX GROUPES DE COMPOSANTS 'A SYNERGIE D'ACTION: LA PRISTINAMYCINE. C R Hebd Seances Acad Sci. 1965 Jan 25;260:1309–1312. [PubMed] [Google Scholar]
  16. Preud'homme J., Tarridec P., Belloc A. 90. Pristinamycine isolement, caractérisation et identification des constituants. Bull Soc Chim Fr. 1968 Feb;2:585–591. [PubMed] [Google Scholar]
  17. Quandt N., Stindl A., Keller U. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis for M(r) estimations of high-molecular-weight polypeptides. Anal Biochem. 1993 Nov 1;214(2):490–494. doi: 10.1006/abio.1993.1527. [DOI] [PubMed] [Google Scholar]
  18. Reed J. W., Kingston D. G. Biosynthesis of antibiotics of the virginiamycin family, 5. The conversion of phenylalanine to phenylglycine in the biosynthesis of virginiamycin S1. J Nat Prod. 1986 Jul-Aug;49(4):626–630. doi: 10.1021/np50046a011. [DOI] [PubMed] [Google Scholar]
  19. Rusnak F., Faraci W. S., Walsh C. T. Subcloning, expression, and purification of the enterobactin biosynthetic enzyme 2,3-dihydroxybenzoate-AMP ligase: demonstration of enzyme-bound (2,3-dihydroxybenzoyl)adenylate product. Biochemistry. 1989 Aug 22;28(17):6827–6835. doi: 10.1021/bi00443a008. [DOI] [PubMed] [Google Scholar]
  20. Schlumbohm W., Keller U. Chromophore activating enzyme involved in the biosynthesis of the mikamycin B antibiotic etamycin from Streptomyces griseoviridus. J Biol Chem. 1990 Feb 5;265(4):2156–2161. [PubMed] [Google Scholar]
  21. Schlumbohm W., Stein T., Ullrich C., Vater J., Krause M., Marahiel M. A., Kruft V., Wittmann-Liebold B. An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase. J Biol Chem. 1991 Dec 5;266(34):23135–23141. [PubMed] [Google Scholar]
  22. Schwecke T., Aharonowitz Y., Palissa H., von Döhren H., Kleinkauf H., van Liempt H. Enzymatic characterisation of the multifunctional enzyme delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Streptomyces clavuligerus. Eur J Biochem. 1992 Apr 15;205(2):687–694. doi: 10.1111/j.1432-1033.1992.tb16830.x. [DOI] [PubMed] [Google Scholar]
  23. Selva E., Gastaldo L., Saddler G. S., Toppo G., Ferrari P., Carniti G., Goldstein B. P. Antibiotics A21459 A and B, new inhibitors of bacterial protein synthesis. I. Taxonomy, isolation and characterization. J Antibiot (Tokyo) 1996 Feb;49(2):145–149. doi: 10.7164/antibiotics.49.145. [DOI] [PubMed] [Google Scholar]
  24. Stachelhaus T., Schneider A., Marahiel M. A. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science. 1995 Jul 7;269(5220):69–72. doi: 10.1126/science.7604280. [DOI] [PubMed] [Google Scholar]
  25. Stein T., Vater J., Kruft V., Wittmann-Liebold B., Franke P., Panico M., Mc Dowell R., Morris H. R. Detection of 4'-phosphopantetheine at the thioester binding site for L-valine of gramicidinS synthetase 2. FEBS Lett. 1994 Feb 28;340(1-2):39–44. doi: 10.1016/0014-5793(94)80169-x. [DOI] [PubMed] [Google Scholar]
  26. Stindl A., Keller U. Epimerization of the D-valine portion in the biosynthesis of actinomycin D. Biochemistry. 1994 Aug 9;33(31):9358–9364. doi: 10.1021/bi00197a041. [DOI] [PubMed] [Google Scholar]
  27. Stindl A., Keller U. The initiation of peptide formation in the biosynthesis of actinomycin. J Biol Chem. 1993 May 15;268(14):10612–10620. [PubMed] [Google Scholar]
  28. Thibaut D., Ratet N., Bisch D., Faucher D., Debussche L., Blanche F. Purification of the two-enzyme system catalyzing the oxidation of the D-proline residue of pristinamycin IIB during the last step of pristinamycin IIA biosynthesis. J Bacteriol. 1995 Sep;177(18):5199–5205. doi: 10.1128/jb.177.18.5199-5205.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. de Crécy-Lagard V., Blanc V., Gil P., Naudin L., Lorenzon S., Famechon A., Bamas-Jacques N., Crouzet J., Thibaut D. Pristinamycin I biosynthesis in Streptomyces pristinaespiralis: molecular characterization of the first two structural peptide synthetase genes. J Bacteriol. 1997 Feb;179(3):705–713. doi: 10.1128/jb.179.3.705-713.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES