Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Feb;179(3):705–713. doi: 10.1128/jb.179.3.705-713.1997

Pristinamycin I biosynthesis in Streptomyces pristinaespiralis: molecular characterization of the first two structural peptide synthetase genes.

V de Crécy-Lagard 1, V Blanc 1, P Gil 1, L Naudin 1, S Lorenzon 1, A Famechon 1, N Bamas-Jacques 1, J Crouzet 1, D Thibaut 1
PMCID: PMC178751  PMID: 9006024

Abstract

Two genes involved in the biosynthesis of the depsipeptide antibiotics pristinamycins I (PI) produced by Streptomyces pristinaespiralis were cloned and sequenced. The 1.7-kb snbA gene encodes a 3-hydroxypicolinic acid:AMP ligase, and the 7.7-kb snbC gene encodes PI synthetase 2, responsible for incorporating L-threonine and L-aminobutyric acid in the PI macrocycle. snbA and snbC, which encode the two first structural enzymes of PI synthesis, are not contiguous. Both genes are located in PI-specific transcriptional units, as disruption of one gene or the other led to PI-deficient strains producing normal levels of the polyunsaturated macrolactone antibiotic pristinamycin II, also produced by S. pristinaespiralis. Analysis of the deduced amino acid sequences showed that the SnbA protein is a member of the adenylate-forming enzyme superfamily and that the SnbC protein contains two amino acid-incorporating modules and a C-terminal epimerization domain. A model for the initiation of PI synthesis analogous to the established model of initiation of fatty acid synthesis is proposed.

Full Text

The Full Text of this article is available as a PDF (338.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini A. M., Caramori T., Scoffone F., Scotti C., Galizzi A. Sequence around the 159 degree region of the Bacillus subtilis genome: the pksX locus spans 33.6 kb. Microbiology. 1995 Feb;141(Pt 2):299–309. doi: 10.1099/13500872-141-2-299. [DOI] [PubMed] [Google Scholar]
  2. Aparicio J. F., Molnár I., Schwecke T., König A., Haydock S. F., Khaw L. E., Staunton J., Leadlay P. F. Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of the enzymatic domains in the modular polyketide synthase. Gene. 1996 Feb 22;169(1):9–16. doi: 10.1016/0378-1119(95)00800-4. [DOI] [PubMed] [Google Scholar]
  3. Blanc V., Lagneaux D., Didier P., Gil P., Lacroix P., Crouzet J. Cloning and analysis of structural genes from Streptomyces pristinaespiralis encoding enzymes involved in the conversion of pristinamycin IIB to pristinamycin IIA (PIIA): PIIA synthase and NADH:riboflavin 5'-phosphate oxidoreductase. J Bacteriol. 1995 Sep;177(18):5206–5214. doi: 10.1128/jb.177.18.5206-5214.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chung C. T., Miller R. H. A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucleic Acids Res. 1988 Apr 25;16(8):3580–3580. doi: 10.1093/nar/16.8.3580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cocito C. Antibiotics of the virginiamycin family, inhibitors which contain synergistic components. Microbiol Rev. 1979 Jun;43(2):145–192. doi: 10.1128/mr.43.2.145-192.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cosmina P., Rodriguez F., de Ferra F., Grandi G., Perego M., Venema G., van Sinderen D. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol. 1993 May;8(5):821–831. doi: 10.1111/j.1365-2958.1993.tb01629.x. [DOI] [PubMed] [Google Scholar]
  7. Crosby J., Sherman D. H., Bibb M. J., Revill W. P., Hopwood D. A., Simpson T. J. Polyketide synthase acyl carrier proteins from Streptomyces: expression in Escherichia coli, purification and partial characterisation. Biochim Biophys Acta. 1995 Aug 16;1251(1):32–42. doi: 10.1016/0167-4838(95)00053-w. [DOI] [PubMed] [Google Scholar]
  8. De Crécy-Lagard V., Marlière P., Saurin W. Multienzymatic non ribosomal peptide biosynthesis: identification of the functional domains catalysing peptide elongation and epimerisation. C R Acad Sci III. 1995 Sep;318(9):927–936. [PubMed] [Google Scholar]
  9. Dieckmann R., Lee Y. O., van Liempt H., von Döhren H., Kleinkauf H. Expression of an active adenylate-forming domain of peptide synthetases corresponding to acyl-CoA-synthetases. FEBS Lett. 1995 Jan 3;357(2):212–216. doi: 10.1016/0014-5793(94)01342-x. [DOI] [PubMed] [Google Scholar]
  10. Gocht M., Marahiel M. A. Analysis of core sequences in the D-Phe activating domain of the multifunctional peptide synthetase TycA by site-directed mutagenesis. J Bacteriol. 1994 May;176(9):2654–2662. doi: 10.1128/jb.176.9.2654-2662.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guilvout I., Mercereau-Puijalon O., Bonnefoy S., Pugsley A. P., Carniel E. High-molecular-weight protein 2 of Yersinia enterocolitica is homologous to AngR of Vibrio anguillarum and belongs to a family of proteins involved in nonribosomal peptide synthesis. J Bacteriol. 1993 Sep;175(17):5488–5504. doi: 10.1128/jb.175.17.5488-5504.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haese A., Pieper R., von Ostrowski T., Zocher R. Bacterial expression of catalytically active fragments of the multifunctional enzyme enniatin synthetase. J Mol Biol. 1994 Oct 14;243(1):116–122. doi: 10.1006/jmbi.1994.1634. [DOI] [PubMed] [Google Scholar]
  13. Haese A., Schubert M., Herrmann M., Zocher R. Molecular characterization of the enniatin synthetase gene encoding a multifunctional enzyme catalysing N-methyldepsipeptide formation in Fusarium scirpi. Mol Microbiol. 1993 Mar;7(6):905–914. doi: 10.1111/j.1365-2958.1993.tb01181.x. [DOI] [PubMed] [Google Scholar]
  14. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  15. Hillemann D., Pühler A., Wohlleben W. Gene disruption and gene replacement in Streptomyces via single stranded DNA transformation of integration vectors. Nucleic Acids Res. 1991 Feb 25;19(4):727–731. doi: 10.1093/nar/19.4.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hohn B., Collins J. A small cosmid for efficient cloning of large DNA fragments. Gene. 1980 Nov;11(3-4):291–298. doi: 10.1016/0378-1119(80)90069-4. [DOI] [PubMed] [Google Scholar]
  17. Kao C. M., Katz L., Khosla C. Engineered biosynthesis of a complete macrolactone in a heterologous host. Science. 1994 Jul 22;265(5171):509–512. doi: 10.1126/science.8036492. [DOI] [PubMed] [Google Scholar]
  18. Katz L., Donadio S. Polyketide synthesis: prospects for hybrid antibiotics. Annu Rev Microbiol. 1993;47:875–912. doi: 10.1146/annurev.mi.47.100193.004303. [DOI] [PubMed] [Google Scholar]
  19. Keller U., Schlumbohm W. Purification and characterization of actinomycin synthetase I, a 4-methyl-3-hydroxyanthranilic acid-AMP ligase from Streptomyces chrysomallus. J Biol Chem. 1992 Jun 15;267(17):11745–11752. [PubMed] [Google Scholar]
  20. Kleinkauf H., von Döhren H. Nonribosomal biosynthesis of peptide antibiotics. Eur J Biochem. 1990 Aug 28;192(1):1–15. doi: 10.1111/j.1432-1033.1990.tb19188.x. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lipmann F. Attempts to map a process evolution of peptide biosynthesis. Science. 1971 Sep 3;173(4000):875–884. doi: 10.1126/science.173.4000.875. [DOI] [PubMed] [Google Scholar]
  23. MacCabe A. P., van Liempt H., Palissa H., Unkles S. E., Riach M. B., Pfeifer E., von Döhren H., Kinghorn J. R. Delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Aspergillus nidulans. Molecular characterization of the acvA gene encoding the first enzyme of the penicillin biosynthetic pathway. J Biol Chem. 1991 Jul 5;266(19):12646–12654. [PubMed] [Google Scholar]
  24. PRIDHAM T. G., ANDERSON P., FOLEY C., LINDENFELSER L. A., HESSELTINE C. W., BENEDICT R. G. A selection of media for maintenance and taxonomic study of Streptomyces. Antibiot Annu. 1956:947–953. [PubMed] [Google Scholar]
  25. Pavela-Vrancic M., Pfeifer E., Schröder W., von Döhren H., Kleinkauf H. Identification of the ATP binding site in tyrocidine synthetase 1 by selective modification with fluorescein 5'-isothiocyanate. J Biol Chem. 1994 May 27;269(21):14962–14966. [PubMed] [Google Scholar]
  26. Pavela-Vrancic M., Pfeifer E., van Liempt H., Schäfer H. J., von Döhren H., Kleinkauf H. ATP binding in peptide synthetases: determination of contact sites of the adenine moiety by photoaffinity labeling of tyrocidine synthetase 1 with 2-azidoadenosine triphosphate. Biochemistry. 1994 May 24;33(20):6276–6283. doi: 10.1021/bi00186a030. [DOI] [PubMed] [Google Scholar]
  27. Pavela-Vrancic M., Van Liempt H., Pfeifer E., Freist W., Von Döhren H. Nucleotide binding by multienzyme peptide synthetases. Eur J Biochem. 1994 Mar 1;220(2):535–542. doi: 10.1111/j.1432-1033.1994.tb18653.x. [DOI] [PubMed] [Google Scholar]
  28. Pfeifer E., Pavela-Vrancic M., von Döhren H., Kleinkauf H. Characterization of tyrocidine synthetase 1 (TY1): requirement of posttranslational modification for peptide biosynthesis. Biochemistry. 1995 Jun 6;34(22):7450–7459. doi: 10.1021/bi00022a019. [DOI] [PubMed] [Google Scholar]
  29. Reichert J., Sakaitani M., Walsh C. T. Characterization of EntF as a serine-activating enzyme. Protein Sci. 1992 Apr;1(4):549–556. doi: 10.1002/pro.5560010410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Roberts G. A., Staunton J., Leadlay P. F. Heterologous expression in Escherichia coli of an intact multienzyme component of the erythromycin-producing polyketide synthase. Eur J Biochem. 1993 May 15;214(1):305–311. doi: 10.1111/j.1432-1033.1993.tb17925.x. [DOI] [PubMed] [Google Scholar]
  31. Rusnak F., Faraci W. S., Walsh C. T. Subcloning, expression, and purification of the enterobactin biosynthetic enzyme 2,3-dihydroxybenzoate-AMP ligase: demonstration of enzyme-bound (2,3-dihydroxybenzoyl)adenylate product. Biochemistry. 1989 Aug 22;28(17):6827–6835. doi: 10.1021/bi00443a008. [DOI] [PubMed] [Google Scholar]
  32. Rusnak F., Sakaitani M., Drueckhammer D., Reichert J., Walsh C. T. Biosynthesis of the Escherichia coli siderophore enterobactin: sequence of the entF gene, expression and purification of EntF, and analysis of covalent phosphopantetheine. Biochemistry. 1991 Mar 19;30(11):2916–2927. doi: 10.1021/bi00225a027. [DOI] [PubMed] [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schlumbohm W., Keller U. Chromophore activating enzyme involved in the biosynthesis of the mikamycin B antibiotic etamycin from Streptomyces griseoviridus. J Biol Chem. 1990 Feb 5;265(4):2156–2161. [PubMed] [Google Scholar]
  35. Schlumbohm W., Stein T., Ullrich C., Vater J., Krause M., Marahiel M. A., Kruft V., Wittmann-Liebold B. An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase. J Biol Chem. 1991 Dec 5;266(34):23135–23141. [PubMed] [Google Scholar]
  36. Schwartz D., Alijah R., Nussbaumer B., Pelzer S., Wohlleben W. The peptide synthetase gene phsA from Streptomyces viridochromogenes is not juxtaposed with other genes involved in nonribosomal biosynthesis of peptides. Appl Environ Microbiol. 1996 Feb;62(2):570–577. doi: 10.1128/aem.62.2.570-577.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schwecke T., Aparicio J. F., Molnár I., König A., Khaw L. E., Haydock S. F., Oliynyk M., Caffrey P., Cortés J., Lester J. B. The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7839–7843. doi: 10.1073/pnas.92.17.7839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Staab J. F., Elkins M. F., Earhart C. F. Nucleotide sequence of the Escherichia coli entE gene. FEMS Microbiol Lett. 1989 May;50(1-2):15–19. doi: 10.1016/0378-1097(89)90450-3. [DOI] [PubMed] [Google Scholar]
  39. Stachelhaus T., Marahiel M. A. Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiol Lett. 1995 Jan 1;125(1):3–14. doi: 10.1111/j.1574-6968.1995.tb07328.x. [DOI] [PubMed] [Google Scholar]
  40. Stachelhaus T., Marahiel M. A. Modular structure of peptide synthetases revealed by dissection of the multifunctional enzyme GrsA. J Biol Chem. 1995 Mar 17;270(11):6163–6169. doi: 10.1074/jbc.270.11.6163. [DOI] [PubMed] [Google Scholar]
  41. Stein T., Kluge B., Vater J., Franke P., Otto A., Wittmann-Liebold B. Gramicidin S synthetase 1 (phenylalanine racemase), a prototype of amino acid racemases containing the cofactor 4'-phosphopantetheine. Biochemistry. 1995 Apr 11;34(14):4633–4642. doi: 10.1021/bi00014a017. [DOI] [PubMed] [Google Scholar]
  42. Stein T., Vater J., Kruft V., Wittmann-Liebold B., Franke P., Panico M., Mc Dowell R., Morris H. R. Detection of 4'-phosphopantetheine at the thioester binding site for L-valine of gramicidinS synthetase 2. FEBS Lett. 1994 Feb 28;340(1-2):39–44. doi: 10.1016/0014-5793(94)80169-x. [DOI] [PubMed] [Google Scholar]
  43. Stindl A., Keller U. Epimerization of the D-valine portion in the biosynthesis of actinomycin D. Biochemistry. 1994 Aug 9;33(31):9358–9364. doi: 10.1021/bi00197a041. [DOI] [PubMed] [Google Scholar]
  44. Stindl A., Keller U. The initiation of peptide formation in the biosynthesis of actinomycin. J Biol Chem. 1993 May 15;268(14):10612–10620. [PubMed] [Google Scholar]
  45. Thibaut D., Bisch D., Ratet N., Maton L., Couder M., Debussche L., Blanche F. Purification of peptide synthetases involved in pristinamycin I biosynthesis. J Bacteriol. 1997 Feb;179(3):697–704. doi: 10.1128/jb.179.3.697-704.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Thibaut D., Ratet N., Bisch D., Faucher D., Debussche L., Blanche F. Purification of the two-enzyme system catalyzing the oxidation of the D-proline residue of pristinamycin IIB during the last step of pristinamycin IIA biosynthesis. J Bacteriol. 1995 Sep;177(18):5199–5205. doi: 10.1128/jb.177.18.5199-5205.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Turgay K., Krause M., Marahiel M. A. Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate-forming enzymes. Mol Microbiol. 1992 Feb;6(4):529–546. doi: 10.1111/j.1365-2958.1992.tb01498.x. [DOI] [PubMed] [Google Scholar]
  48. Wakil S. J. Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry. 1989 May 30;28(11):4523–4530. doi: 10.1021/bi00437a001. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES