Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Feb;179(3):730–734. doi: 10.1128/jb.179.3.730-734.1997

Oxidative inactivation of glutamine synthetase from the cyanobacterium Anabaena variabilis.

G Martin 1, W Haehnel 1, P Böger 1
PMCID: PMC178754  PMID: 9006027

Abstract

In crude extracts of the cyanobacterium Anabaena variabilis, glutamine synthetase (GS) could be effectively inactivated by the addition of NADH. GS inactivation was completed within 30 min. Both the inactivated GS and the active enzyme were isolated. No difference between the two enzyme forms was seen in sodium dodecyl sulfate-gels, and only minor differences were detectable by UV spectra, which excludes modification by a nucleotide. Mass spectrometry revealed that the molecular masses of active and inactive GS are equal. While the Km values of the substrates were unchanged, the Vmax values of the inactive GS were lower, reflecting the inactivation factor in the crude extract. This result indicates that the active site was affected. From the crude extract, a fraction mediating GS inactivation could be enriched by ammonium sulfate precipitation and gel filtration. GS inactivation by this fraction required the presence of NAD(P)H, Fe3+, and oxygen. In the absence of the GS-inactivating fraction, GS could be inactivated by Fe2+ and H2O2. The GS-inactivating fraction produced Fe2+ and H2O2, using NADPH, Fe3+, and oxygen. Accordingly, the inactivating fraction was inhibited by catalase and EDTA. This GS-inactivating system of Anabaena is similar to that described for oxidative GS inactivation in Escherichia coli. We conclude that GS inactivation by NAD(P)H is caused by irreversible oxidative damage and is not due to a regulatory mechanism of nitrogen assimilation.

Full Text

The Full Text of this article is available as a PDF (221.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I., McSwain B. D., Tsujimoto H. Y., Wada K. Photochemical activity and components of membrane preparations from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin. Biochim Biophys Acta. 1974 Aug 23;357(2):231–245. doi: 10.1016/0005-2728(74)90063-2. [DOI] [PubMed] [Google Scholar]
  2. Avrameas S., Guilbert B. Enzyme-immunoassay for the measurement of antigens using peroxidase conjugates. Biochimie. 1972;54(7):837–842. doi: 10.1016/s0300-9084(72)80004-x. [DOI] [PubMed] [Google Scholar]
  3. Bender R. A., Streicher S. L. Glutamine synthetase regulation, adenylylation state, and strain specificity analyzed by polyacrylamide gel electrophoresis. J Bacteriol. 1979 Feb;137(2):1000–1007. doi: 10.1128/jb.137.2.1000-1007.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chow T. J., Tabita F. R. Reciprocal light-dark transcriptional control of nif and rbc expression and light-dependent posttranslational control of nitrogenase activity in Synechococcus sp. strain RF-1. J Bacteriol. 1994 Oct;176(20):6281–6285. doi: 10.1128/jb.176.20.6281-6285.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Durner J., Böger P. Ubiquitin in the prokaryote Anabaena variabilis. J Biol Chem. 1995 Feb 24;270(8):3720–3725. doi: 10.1074/jbc.270.8.3720. [DOI] [PubMed] [Google Scholar]
  6. Durner J., Böhm I., Knörzer O. C., Böger P. Proteolytic degradation of dinitrogenase reductase from Anabaena variabilis (ATCC 29413) as a consequence of ATP depletion and impact of oxygen. J Bacteriol. 1996 Feb;178(3):606–610. doi: 10.1128/jb.178.3.606-610.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edmonds C. G., Smith R. D. Electrospray ionization mass spectrometry. Methods Enzymol. 1990;193:412–431. doi: 10.1016/0076-6879(90)93430-s. [DOI] [PubMed] [Google Scholar]
  8. Fucci L., Oliver C. N., Coon M. J., Stadtman E. R. Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageing. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1521–1525. doi: 10.1073/pnas.80.6.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Levine R. L., Oliver C. N., Fulks R. M., Stadtman E. R. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2120–2124. doi: 10.1073/pnas.78.4.2120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Levine R. L. Oxidative modification of glutamine synthetase. II. Characterization of the ascorbate model system. J Biol Chem. 1983 Oct 10;258(19):11828–11833. [PubMed] [Google Scholar]
  11. Lowery R. G., Ludden P. W. Purification and properties of dinitrogenase reductase ADP-ribosyltransferase from the photosynthetic bacterium Rhodospirillum rubrum. J Biol Chem. 1988 Nov 15;263(32):16714–16719. [PubMed] [Google Scholar]
  12. Moss J., Stanley S. J., Levine R. L. Inactivation of bacterial glutamine synthetase by ADP-ribosylation. J Biol Chem. 1990 Dec 5;265(34):21056–21060. [PubMed] [Google Scholar]
  13. Mérida A., Candau P., Florencio F. J. Regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 by the nitrogen source: effect of ammonium. J Bacteriol. 1991 Jul;173(13):4095–4100. doi: 10.1128/jb.173.13.4095-4100.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Orr J., Haselkorn R. Kinetic and inhibition studies of glutamine synthetase from the cyanobacterium Anabaena 7120. J Biol Chem. 1981 Dec 25;256(24):13099–13104. [PubMed] [Google Scholar]
  15. Orr J., Keefer L. M., Keim P., Nguyen T. D., Wellems T., Heinrikson R. L., Haselkorn R. Purification, physical characterization, and NH2-terminal sequence of glutamine synthetase from the cyanobacterium Anabaena 7120. J Biol Chem. 1981 Dec 25;256(24):13091–13098. [PubMed] [Google Scholar]
  16. Penyige A., Kálmánczhelyi A., Sipos A., Ensign J. C., Barabás G. Modification of glutamine synthetase in Streptomyces griseus by ADP-ribosylation and adenylylation. Biochem Biophys Res Commun. 1994 Oct 28;204(2):598–605. doi: 10.1006/bbrc.1994.2501. [DOI] [PubMed] [Google Scholar]
  17. Samuni A., Aronovitch J., Godinger D., Chevion M., Czapski G. On the cytotoxicity of vitamin C and metal ions. A site-specific Fenton mechanism. Eur J Biochem. 1983 Dec 1;137(1-2):119–124. doi: 10.1111/j.1432-1033.1983.tb07804.x. [DOI] [PubMed] [Google Scholar]
  18. Shapiro B. M., Kingdon H. S., Stadtman E. R. Regulation of glutamine synthetase. VII. Adenylyl glutamine synthetase: a new form of the enzyme with altered regulatory and kinetic properties. Proc Natl Acad Sci U S A. 1967 Aug;58(2):642–649. doi: 10.1073/pnas.58.2.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Silman N. J., Carr N. G., Mann N. H. ADP-ribosylation of glutamine synthetase in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol. 1995 Jun;177(12):3527–3533. doi: 10.1128/jb.177.12.3527-3533.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  21. Stadtman E. R. Covalent modification reactions are marking steps in protein turnover. Biochemistry. 1990 Jul 10;29(27):6323–6331. doi: 10.1021/bi00479a001. [DOI] [PubMed] [Google Scholar]
  22. Stadtman E. R. Discovery of glutamine synthetase cascade. Methods Enzymol. 1990;182:793–809. doi: 10.1016/0076-6879(90)82062-7. [DOI] [PubMed] [Google Scholar]
  23. Stadtman E. R., Wittenberger M. E. Inactivation of Escherichia coli glutamine synthetase by xanthine oxidase, nicotinate hydroxylase, horseradish peroxidase, or glucose oxidase: effects of ferredoxin, putidaredoxin, and menadione. Arch Biochem Biophys. 1985 Jun;239(2):379–387. doi: 10.1016/0003-9861(85)90703-9. [DOI] [PubMed] [Google Scholar]
  24. Woehle D. L., Lueddecke B. A., Ludden P. W. ATP-dependent and NAD-dependent modification of glutamine synthetase from Rhodospirillum rubrum in vitro. J Biol Chem. 1990 Aug 15;265(23):13741–13749. [PubMed] [Google Scholar]
  25. Woolfolk C. A., Shapiro B., Stadtman E. R. Regulation of glutamine synthetase. I. Purification and properties of glutamine synthetase from Escherichia coli. Arch Biochem Biophys. 1966 Sep 26;116(1):177–192. doi: 10.1016/0003-9861(66)90026-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES