Abstract
A gene (designated ecaA) encoding a vertebrate-like (alpha-type) carbonic anhydrase (CA) has been isolated from two disparate cyanobacteria, Anabaena sp. strain PCC 7120 and Synechococcus sp. strain PCC 7942. The deduced amino acid sequences correspond to proteins of 29 and 26 kDa, respectively, and revealed significant sequence similarity to human CAI and CAII, as well as Chlamydomonas CAHI, including conservation of most active-site residues identified in the animal enzymes. Structural similarities between the animal and cyanobacterial enzymes extend to the levels of antigenicity, as the Anabaena protein cross-reacts with antisera derived against chicken CAII. Expression of the cyanobacterial ecaA is regulated by CO2 concentration and is highest in cells grown at elevated levels of CO2. Immunogold localization using an antibody derived against the ecaA protein indicated an extracellular location. Preliminary analysis of Synechococcus mutants in which ecaA has been inactivated by insertion of a drug resistance cassette suggests that extracellular carbonic anhydrase plays a role in inorganic-carbon accumulation by maintaining equilibrium levels of CO2 and HCO3- in the periplasm.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alber B. E., Ferry J. G. A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6909–6913. doi: 10.1073/pnas.91.15.6909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersson B., Nyman P. O., Strid L. Amino acid sequence of human erythrocyte carbonic anhydrase B. Biochem Biophys Res Commun. 1972 Aug 7;48(3):670–677. doi: 10.1016/0006-291x(72)90400-7. [DOI] [PubMed] [Google Scholar]
- Fujiwara S., Fukuzawa H., Tachiki A., Miyachi S. Structure and differential expression of two genes encoding carbonic anhydrase in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9779–9783. doi: 10.1073/pnas.87.24.9779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukuzawa H., Fujiwara S., Yamamoto Y., Dionisio-Sese M. L., Miyachi S. cDNA cloning, sequence, and expression of carbonic anhydrase in Chlamydomonas reinhardtii: regulation by environmental CO2 concentration. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4383–4387. doi: 10.1073/pnas.87.11.4383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukuzawa H., Suzuki E., Komukai Y., Miyachi S. A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4437–4441. doi: 10.1073/pnas.89.10.4437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guilloton M. B., Korte J. J., Lamblin A. F., Fuchs J. A., Anderson P. M. Carbonic anhydrase in Escherichia coli. A product of the cyn operon. J Biol Chem. 1992 Feb 25;267(6):3731–3734. [PubMed] [Google Scholar]
- Henderson L. E., Henriksson D., Nyman P. O. Amino acid sequence of human erythrocyte carbonic anhydrase C. Biochem Biophys Res Commun. 1973 Jun 19;52(4):1388–1394. doi: 10.1016/0006-291x(73)90655-4. [DOI] [PubMed] [Google Scholar]
- Hewett-Emmett D., Tashian R. E. Functional diversity, conservation, and convergence in the evolution of the alpha-, beta-, and gamma-carbonic anhydrase gene families. Mol Phylogenet Evol. 1996 Feb;5(1):50–77. doi: 10.1006/mpev.1996.0006. [DOI] [PubMed] [Google Scholar]
- Kaplan A., Schwarz R., Lieman-Hurwitz J., Reinhold L. Physiological and molecular aspects of the inorganic carbon-concentrating mechanism in cyanobacteria. Plant Physiol. 1991 Nov;97(3):851–855. doi: 10.1104/pp.97.3.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katoh A., Lee K. S., Fukuzawa H., Ohyama K., Ogawa T. cemA homologue essential to CO2 transport in the cyanobacterium Synechocystis PCC6803. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4006–4010. doi: 10.1073/pnas.93.9.4006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipman D. J., Pearson W. R. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. doi: 10.1126/science.2983426. [DOI] [PubMed] [Google Scholar]
- Mackle M. M., Zilinskas B. A. Role of signal peptides in targeting of proteins in cyanobacteria. J Bacteriol. 1994 Apr;176(7):1857–1864. doi: 10.1128/jb.176.7.1857-1864.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Majeau N., Coleman J. R. Isolation and characterization of a cDNA coding for pea chloroplastic carbonic anhydrase. Plant Physiol. 1991 Jan;95(1):264–268. doi: 10.1104/pp.95.1.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulligan M. E., Jackman D. M., Murphy S. T. Heterocyst-forming filamentous cyanobacteria encode proteins that resemble eukaryotic RNA-binding proteins of the RNP family. J Mol Biol. 1994 Jan 21;235(3):1162–1170. doi: 10.1006/jmbi.1994.1070. [DOI] [PubMed] [Google Scholar]
- Ogawa T. A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC6803. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4275–4279. doi: 10.1073/pnas.88.10.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Price G. D., Coleman J. R., Badger M. R. Association of Carbonic Anhydrase Activity with Carboxysomes Isolated from the Cyanobacterium Synechococcus PCC7942. Plant Physiol. 1992 Oct;100(2):784–793. doi: 10.1104/pp.100.2.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Provart N. J., Majeau N., Coleman J. R. Characterization of pea chloroplastic carbonic anhydrase. Expression in Escherichia coli and site-directed mutagenesis. Plant Mol Biol. 1993 Sep;22(6):937–943. doi: 10.1007/BF00028967. [DOI] [PubMed] [Google Scholar]
- Soltes-Rak E., Kushner D. J., Williams D. D., Coleman J. R. Factors regulating cryIVB expression in the cyanobacterium--Synechococcus PCC 7942. Mol Gen Genet. 1995 Feb 6;246(3):301–308. doi: 10.1007/BF00288602. [DOI] [PubMed] [Google Scholar]
- Tashian R. E. The carbonic anhydrases: widening perspectives on their evolution, expression and function. Bioessays. 1989 Jun;10(6):186–192. doi: 10.1002/bies.950100603. [DOI] [PubMed] [Google Scholar]
- Webb R., Troyan T., Sherman D., Sherman L. A. MapA, an iron-regulated, cytoplasmic membrane protein in the cyanobacterium Synechococcus sp. strain PCC7942. J Bacteriol. 1994 Aug;176(16):4906–4913. doi: 10.1128/jb.176.16.4906-4913.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu J. W., Price G. D., Song L., Badger M. R. Isolation of a Putative Carboxysomal Carbonic Anhydrase Gene from the Cyanobacterium Synechococcus PCC7942. Plant Physiol. 1992 Oct;100(2):794–800. doi: 10.1104/pp.100.2.794. [DOI] [PMC free article] [PubMed] [Google Scholar]