Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Feb;179(3):853–862. doi: 10.1128/jb.179.3.853-862.1997

Amino acid transport in taxonomically diverse cyanobacteria and identification of two genes encoding elements of a neutral amino acid permease putatively involved in recapture of leaked hydrophobic amino acids.

M L Montesinos 1, A Herrero 1, E Flores 1
PMCID: PMC178770  PMID: 9006043

Abstract

The activities of uptake of thirteen 14C-labeled amino acids were determined in nine cyanobacteria, including the unicellular strains Synechococcus sp. strain PCC 7942 and Synechocystis sp. strain PCC 6803; the filamentous strain Pseudanabaena sp. strain PCC 6903, and the filamentous, heterocyst-forming strains Anabaena sp. strains PCC 7120 and PCC 7937; Nostoc sp. strains PCC 7413 and PCC 7107; Calothrix sp. strain PCC 7601 (which is a mutant unable to develop heterocysts); and Fischerella muscicola UTEX 1829. Amino acid transport mutants, selected as mutants resistant to some amino acid analogs, were isolated from the Anabaena, Nostoc, Calothrix, and Pseudanabaena strains. All of the tested cyanobacteria bear at least a neutral amino acid transport system, and some strains also bear transport systems specific for basic or acidic amino acids. Two genes, natA and natB, encoding elements (conserved component, NatA, and periplasmic binding protein, NatB) of an ABC-type permease for neutral amino acids were identified by insertional mutagenesis of strain PCC 6803 open reading frames from the recently published genomic DNA sequence of this cyanobacterium. DNA sequences homologous to natA and natB from strain PCC 6803 were detected by hybridization in eight cyanobacterial strains tested. Mutants unable to transport neutral amino acids, including natA and natB insertional mutants, accumulated in the extracellular medium a set of amino acids that always included Ala, Val, Phe, Ile, and Leu. A general role for a cyanobacterial neutral amino acid permease in recapture of hydrophobic amino acids leaked from the cells is suggested.

Full Text

The Full Text of this article is available as a PDF (373.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames G. F. Structure and mechanism of bacterial periplasmic transport systems. J Bioenerg Biomembr. 1988 Feb;20(1):1–18. doi: 10.1007/BF00762135. [DOI] [PubMed] [Google Scholar]
  2. Cai Y. P., Wolk C. P. Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J Bacteriol. 1990 Jun;172(6):3138–3145. doi: 10.1128/jb.172.6.3138-3145.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chapman J. S., Meeks J. C. Glutamine and glutamate transport by Anabaena variabilis. J Bacteriol. 1983 Oct;156(1):122–129. doi: 10.1128/jb.156.1.122-129.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Elhai J., Wolk C. P. A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene. 1988 Aug 15;68(1):119–138. doi: 10.1016/0378-1119(88)90605-1. [DOI] [PubMed] [Google Scholar]
  5. FOGG G. E. The production of extracellular nitrogenous substances by a blue-green alga. Proc R Soc Lond B Biol Sci. 1952 Apr 24;139(896):372–397. doi: 10.1098/rspb.1952.0019. [DOI] [PubMed] [Google Scholar]
  6. Giovannoni S. J., Turner S., Olsen G. J., Barns S., Lane D. J., Pace N. R. Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol. 1988 Aug;170(8):3584–3592. doi: 10.1128/jb.170.8.3584-3592.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Herrero A., Flores E. Transport of basic amino acids by the dinitrogen-fixing cyanobacterium Anabaena PCC 7120. J Biol Chem. 1990 Mar 5;265(7):3931–3935. [PubMed] [Google Scholar]
  8. Hoshino T., Kose K. Cloning and nucleotide sequence of braC, the structural gene for the leucine-, isoleucine-, and valine-binding protein of Pseudomonas aeruginosa PAO. J Bacteriol. 1989 Nov;171(11):6300–6306. doi: 10.1128/jb.171.11.6300-6306.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hoshino T., Kose K. Cloning, nucleotide sequences, and identification of products of the Pseudomonas aeruginosa PAO bra genes, which encode the high-affinity branched-chain amino acid transport system. J Bacteriol. 1990 Oct;172(10):5531–5539. doi: 10.1128/jb.172.10.5531-5539.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaneko T., Tanaka A., Sato S., Kotani H., Sazuka T., Miyajima N., Sugiura M., Tabata S. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. I. Sequence features in the 1 Mb region from map positions 64% to 92% of the genome. DNA Res. 1995 Aug 31;2(4):153-66, 191-8. doi: 10.1093/dnares/2.4.153. [DOI] [PubMed] [Google Scholar]
  11. Labarre J., Thuriaux P., Chauvat F. Genetic analysis of amino acid transport in the facultatively heterotrophic cyanobacterium Synechocystis sp. strain 6803. J Bacteriol. 1987 Oct;169(10):4668–4673. doi: 10.1128/jb.169.10.4668-4673.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lee-Kaden J., Simonis W. Amino acid uptake and energy coupling dependent on photosynthesis in Anacystis nidulans. J Bacteriol. 1982 Jul;151(1):229–236. doi: 10.1128/jb.151.1.229-236.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Montesinos M. L., Herrero A., Flores E. Amino acid transport systems required for diazotrophic growth in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol. 1995 Jun;177(11):3150–3157. doi: 10.1128/jb.177.11.3150-3157.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. STEWART W. D. LIBERATION OF EXTRACELLULAR NITROGEN BY 2 NITROGEN-FIXING BLUE-GREEN ALGAE. Nature. 1963 Dec 7;200:1020–1021. doi: 10.1038/2001020a0. [DOI] [PubMed] [Google Scholar]
  15. WATANABE A. Production in cultural solution of some amino acids by the atmospheric nitrogen-fixing blue-green algae. Arch Biochem Biophys. 1951 Nov;34(1):50–55. doi: 10.1016/s0003-9861(51)80007-9. [DOI] [PubMed] [Google Scholar]
  16. Weathers P. J., Chee H. L., Allen M. M. Arginine catabolism in Aphanocapsa 6308. Arch Microbiol. 1978 Jul;118(1):1–6. doi: 10.1007/BF00406066. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES