Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Feb;179(3):863–870. doi: 10.1128/jb.179.3.863-870.1997

Construction and characterization of a mutant of alkaliphilic Bacillus firmus OF4 with a disrupted cta operon and purification of a novel cytochrome bd.

R Gilmour 1, T A Krulwich 1
PMCID: PMC178771  PMID: 9006044

Abstract

The caa3-type terminal oxidase of Bacillus firmus OF4 has been proposed to play an important role in the growth and bioenergetics of this alkaliphile (A. A. Guffanti and T. A. Krulwich, J. Biol. Chem. 267:9580-9588, 1992). A mutant strain was generated in which the cta operon encoding the oxidase was disrupted by insertion of a spectinomycin resistance cassette. The mutant was unable to oxidize ascorbate in the presence of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). Absorption spectra of membranes confirmed the loss of the enzyme and indicated the presence of a cytochrome bd-type terminal oxidase. The mutant could grow on glucose but was unable to grow on malate or other nonfermentative carbon sources, despite the presence of the cytochrome bd. The cytochrome bd was purified from the mutant. The enzyme consisted of two subunits and, with menadiol as substrate, consumed oxygen with a specific activity of 12 micromol of O2 x min(-1) x mg(-1). In contrast to both cytochromes bd of Escherichia coli, the enzyme did not utilize TMPD as an electron source. A number of additional features, including subunit size and spectral properties, distinguish this cytochrome bd from its counterparts in E. coli and Azotobacter vinelandii.

Full Text

The Full Text of this article is available as a PDF (322.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Au D. C., Lorence R. M., Gennis R. B. Isolation and characterization of an Escherichia coli mutant lacking the cytochrome o terminal oxidase. J Bacteriol. 1985 Jan;161(1):123–127. doi: 10.1128/jb.161.1.123-127.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Avetisyan A. V., Bogachev A. V., Murtasina R. A., Skulachev V. P. Involvement of a d-type oxidase in the Na(+)-motive respiratory chain of Escherichia coli growing under low delta mu H+ conditions. FEBS Lett. 1992 Jul 20;306(2-3):199–202. doi: 10.1016/0014-5793(92)80999-w. [DOI] [PubMed] [Google Scholar]
  3. Berry E. A., Trumpower B. L. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Anal Biochem. 1987 Feb 15;161(1):1–15. doi: 10.1016/0003-2697(87)90643-9. [DOI] [PubMed] [Google Scholar]
  4. Biswas I., Gruss A., Ehrlich S. D., Maguin E. High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol. 1993 Jun;175(11):3628–3635. doi: 10.1128/jb.175.11.3628-3635.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gilmour R., Krulwich T. A. Purification and characterization of the succinate dehydrogenase complex and CO-reactive b-type cytochromes from the facultative alkaliphile Bacillus firmus OF4. Biochim Biophys Acta. 1996 Aug 7;1276(1):57–63. doi: 10.1016/0005-2728(96)00028-x. [DOI] [PubMed] [Google Scholar]
  6. Green G. N., Fang H., Lin R. J., Newton G., Mather M., Georgiou C. D., Gennis R. B. The nucleotide sequence of the cyd locus encoding the two subunits of the cytochrome d terminal oxidase complex of Escherichia coli. J Biol Chem. 1988 Sep 15;263(26):13138–13143. [PubMed] [Google Scholar]
  7. Guffanti A. A., Krulwich T. A. Features of apparent nonchemiosmotic energization of oxidative phosphorylation by alkaliphilic Bacillus firmus OF4. J Biol Chem. 1992 May 15;267(14):9580–9588. [PubMed] [Google Scholar]
  8. Hatefi Y., Stiggall D. L. Preparation and properties of succinate: ubiquinone oxidoreductase (complex II). Methods Enzymol. 1978;53:21–27. doi: 10.1016/s0076-6879(78)53008-5. [DOI] [PubMed] [Google Scholar]
  9. Hicks D. B., Krulwich T. A. Purification and reconstitution of the F1F0-ATP synthase from alkaliphilic Bacillus firmus OF4. Evidence that the enzyme translocates H+ but not Na+. J Biol Chem. 1990 Nov 25;265(33):20547–20554. [PubMed] [Google Scholar]
  10. Hicks D. B., Krulwich T. A. The respiratory chain of alkaliphilic bacteria. Biochim Biophys Acta. 1995 May 10;1229(3):303–314. doi: 10.1016/0005-2728(95)00024-d. [DOI] [PubMed] [Google Scholar]
  11. Hicks D. B., Plass R. J., Quirk P. G. Evidence for multiple terminal oxidases, including cytochrome d, in facultatively alkaliphilic Bacillus firmus OF4. J Bacteriol. 1991 Aug;173(16):5010–5016. doi: 10.1128/jb.173.16.5010-5016.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. James W. S., Gibson F., Taroni P., Poole R. K. The cytochrome oxidases of Bacillus subtilis: mapping of a gene affecting cytochrome aa3 and its replacement by cytochrome o in a mutant strain. FEMS Microbiol Lett. 1989 Apr;49(2-3):277–281. doi: 10.1016/0378-1097(89)90053-0. [DOI] [PubMed] [Google Scholar]
  13. Jünemann S., Wrigglesworth J. M. Cytochrome bd oxidase from Azotobacter vinelandii. Purification and quantitation of ligand binding to the oxygen reduction site. J Biol Chem. 1995 Jul 7;270(27):16213–16220. doi: 10.1074/jbc.270.27.16213. [DOI] [PubMed] [Google Scholar]
  14. Kita K., Konishi K., Anraku Y. Purification and properties of two terminal oxidase complexes of Escherichia coli aerobic respiratory chain. Methods Enzymol. 1986;126:94–113. doi: 10.1016/s0076-6879(86)26012-7. [DOI] [PubMed] [Google Scholar]
  15. Kolonay J. F., Jr, Moshiri F., Gennis R. B., Kaysser T. M., Maier R. J. Purification and characterization of the cytochrome bd complex from Azotobacter vinelandii: comparison to the complex from Escherichia coli. J Bacteriol. 1994 Jul;176(13):4177–4181. doi: 10.1128/jb.176.13.4177-4181.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Krulwich T. A. Alkaliphiles: 'basic' molecular problems of pH tolerance and bioenergetics. Mol Microbiol. 1995 Feb;15(3):403–410. doi: 10.1111/j.1365-2958.1995.tb02253.x. [DOI] [PubMed] [Google Scholar]
  17. Krulwich T. A., Ito M., Gilmour R., Sturr M. G., Guffanti A. A., Hicks D. B. Energetic problems of extremely alkaliphilic aerobes. Biochim Biophys Acta. 1996 Jul 18;1275(1-2):21–26. doi: 10.1016/0005-2728(96)00044-8. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Lauraeus M., Haltia T., Saraste M., Wikström M. Bacillus subtilis expresses two kinds of haem-A-containing terminal oxidases. Eur J Biochem. 1991 May 8;197(3):699–705. doi: 10.1111/j.1432-1033.1991.tb15961.x. [DOI] [PubMed] [Google Scholar]
  20. Lemma E., Schägger H., Kröger A. The menaquinol oxidase of Bacillus subtilis W23. Arch Microbiol. 1993;159(6):574–578. doi: 10.1007/BF00249037. [DOI] [PubMed] [Google Scholar]
  21. Miller M. J., Gennis R. B. The purification and characterization of the cytochrome d terminal oxidase complex of the Escherichia coli aerobic respiratory chain. J Biol Chem. 1983 Aug 10;258(15):9159–9165. [PubMed] [Google Scholar]
  22. Miller M. J., Hermodson M., Gennis R. B. The active form of the cytochrome d terminal oxidase complex of Escherichia coli is a heterodimer containing one copy of each of the two subunits. J Biol Chem. 1988 Apr 15;263(11):5235–5240. [PubMed] [Google Scholar]
  23. Moshiri F., Chawla A., Maier R. J. Cloning, characterization, and expression in Escherichia coli of the genes encoding the cytochrome d oxidase complex from Azotobacter vinelandii. J Bacteriol. 1991 Oct;173(19):6230–6241. doi: 10.1128/jb.173.19.6230-6241.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mueller J. P., Taber H. W. Isolation and sequence of ctaA, a gene required for cytochrome aa3 biosynthesis and sporulation in Bacillus subtilis. J Bacteriol. 1989 Sep;171(9):4967–4978. doi: 10.1128/jb.171.9.4967-4978.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Murphy E., Huwyler L., de Freire Bastos M. do C. Transposon Tn554: complete nucleotide sequence and isolation of transposition-defective and antibiotic-sensitive mutants. EMBO J. 1985 Dec 1;4(12):3357–3365. doi: 10.1002/j.1460-2075.1985.tb04089.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Quirk P. G., Guffanti A. A., Plass R. J., Clejan S., Krulwich T. A. Protonophore-resistance and cytochrome expression in mutant strains of the facultative alkaliphile Bacillus firmus OF4. Biochim Biophys Acta. 1991 Jun 17;1058(2):131–140. doi: 10.1016/s0005-2728(05)80229-4. [DOI] [PubMed] [Google Scholar]
  27. Quirk P. G., Hicks D. B., Krulwich T. A. Cloning of the cta operon from alkaliphilic Bacillus firmus OF4 and characterization of the pH-regulated cytochrome caa3 oxidase it encodes. J Biol Chem. 1993 Jan 5;268(1):678–685. [PubMed] [Google Scholar]
  28. Sakamoto J., Matsumoto A., Oobuchi K., Sone N. Cytochrome bd-type quinol oxidase in a mutant of Bacillus stearothermophilus deficient in caa3-type cytochrome c oxidase. FEMS Microbiol Lett. 1996 Oct 1;143(2-3):151–158. doi: 10.1111/j.1574-6968.1996.tb08474.x. [DOI] [PubMed] [Google Scholar]
  29. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  30. Sturr M. G., Guffanti A. A., Krulwich T. A. Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continuous culture at high pH. J Bacteriol. 1994 Jun;176(11):3111–3116. doi: 10.1128/jb.176.11.3111-3116.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sturr M. G., Krulwich T. A., Hicks D. B. Purification of a cytochrome bd terminal oxidase encoded by the Escherichia coli app locus from a delta cyo delta cyd strain complemented by genes from Bacillus firmus OF4. J Bacteriol. 1996 Mar;178(6):1742–1749. doi: 10.1128/jb.178.6.1742-1749.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Taber H. Isolation and properties of cytochrome a deficient mutants of Bacillus subtilis. J Gen Microbiol. 1974 Apr;81(2):435–444. doi: 10.1099/00221287-81-2-435. [DOI] [PubMed] [Google Scholar]
  33. Trumpower B. L., Gennis R. B. Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: the enzymology of coupling electron transfer reactions to transmembrane proton translocation. Annu Rev Biochem. 1994;63:675–716. doi: 10.1146/annurev.bi.63.070194.003331. [DOI] [PubMed] [Google Scholar]
  34. Tsubaki M., Hori H., Mogi T., Anraku Y. Cyanide-binding site of bd-type ubiquinol oxidase from Escherichia coli. J Biol Chem. 1995 Dec 1;270(48):28565–28569. doi: 10.1074/jbc.270.48.28565. [DOI] [PubMed] [Google Scholar]
  35. van der Oost J., von Wachenfeld C., Hederstedt L., Saraste M. Bacillus subtilis cytochrome oxidase mutants: biochemical analysis and genetic evidence for two aa3-type oxidases. Mol Microbiol. 1991 Aug;5(8):2063–2072. doi: 10.1111/j.1365-2958.1991.tb00829.x. [DOI] [PubMed] [Google Scholar]
  36. von Wachenfeldt C., Hederstedt L. Molecular biology of Bacillus subtilis cytochromes. FEMS Microbiol Lett. 1992 Dec 15;100(1-3):91–100. doi: 10.1111/j.1574-6968.1992.tb14025.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES