Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Feb;179(3):871–879. doi: 10.1128/jb.179.3.871-879.1997

Structure-function studies of the adenylate cyclase toxin of Bordetella pertussis and the leukotoxin of Pasteurella haemolytica by heterologous C protein activation and construction of hybrid proteins.

G Westrop 1, K Hormozi 1, N da Costa 1, R Parton 1, J Coote 1
PMCID: PMC178772  PMID: 9006045

Abstract

The adenylate cyclase toxin (CyaA) from Bordetella pertussis and the leukotoxin (LktA) from Pasteurella haemolytica are members of the RTX (stands for repeats in toxin) family of cytolytic toxins. They have pore-forming activity and share significant amino acid homology but show marked differences in biological activity. CyaA is an invasive adenylate cyclase and a weak hemolysin which is active on a wide range of mammalian cells. LktA is a cytolytic protein with a high target cell specificity and is able to lyse only leukocytes and platelets from ruminants. Each toxin is synthesized as an inactive protoxin encoded by the A gene, and the product of the accessory C gene is required for posttranslational activation. Heterologous activation of LktA by CyaC did not result in a change in its specificity for nucleated cells, although the toxin showed a greater hemolytic-to-cytotoxic ratio. LktC was unable to activate CyaA. A hybrid toxin (Hyb1), which contained the N-terminal enzymic domain and the pore-forming domain from CyaA (amino acids [aa] 1 to 687), with the remainder of the protein derived from the C-terminal end of LktA (aa 379 to 953), showed no toxic activity. Replacement of part of the LktA C-terminal domain of Hyb1 by the CyaA C-terminal domain (aa 919 to 1706) to create hybrid toxin 2 (Hyb2) partially restored toxic activity. In contrast to CyaA, Hyb2 was activated more efficiently by LktC than by CyaC, showing the importance of the region between aa 379 and 616 of LktA for activation by LktC. LktC-activated Hyb2 was more active against ruminant than murine nucleated cells, whereas CyaC-activated Hyb2 displayed a similar, but lower, activity against both cell types. These data indicate that LktC and the region with which it interacts have an influence on the target cell specificity of the mature toxin.

Full Text

The Full Text of this article is available as a PDF (370.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellalou J., Sakamoto H., Ladant D., Geoffroy C., Ullmann A. Deletions affecting hemolytic and toxin activities of Bordetella pertussis adenylate cyclase. Infect Immun. 1990 Oct;58(10):3242–3247. doi: 10.1128/iai.58.10.3242-3247.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Betsou F., Sebo P., Guiso N. The C-terminal domain is essential for protective activity of the Bordetella pertussis adenylate cyclase-hemolysin. Infect Immun. 1995 Sep;63(9):3309–3315. doi: 10.1128/iai.63.9.3309-3315.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boehm D. F., Welch R. A., Snyder I. S. Domains of Escherichia coli hemolysin (HlyA) involved in binding of calcium and erythrocyte membranes. Infect Immun. 1990 Jun;58(6):1959–1964. doi: 10.1128/iai.58.6.1959-1964.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Brownlie R. M., Coote J. G., Parton R., Schultz J. E., Rogel A., Hanski E. Cloning of the adenylate cyclase genetic determinant of Bordetella pertussis and its expression in Escherichia coli and B. pertussis. Microb Pathog. 1988 May;4(5):335–344. doi: 10.1016/0882-4010(88)90061-7. [DOI] [PubMed] [Google Scholar]
  6. Coote J. G. Structural and functional relationships among the RTX toxin determinants of gram-negative bacteria. FEMS Microbiol Rev. 1992 Feb;8(2):137–161. doi: 10.1111/j.1574-6968.1992.tb04961.x. [DOI] [PubMed] [Google Scholar]
  7. Ehrmann I. E., Gray M. C., Gordon V. M., Gray L. S., Hewlett E. L. Hemolytic activity of adenylate cyclase toxin from Bordetella pertussis. FEBS Lett. 1991 Jan 14;278(1):79–83. doi: 10.1016/0014-5793(91)80088-k. [DOI] [PubMed] [Google Scholar]
  8. Forestier C., Welch R. A. Nonreciprocal complementation of the hlyC and lktC genes of the Escherichia coli hemolysin and Pasteurella haemolytica leukotoxin determinants. Infect Immun. 1990 Mar;58(3):828–832. doi: 10.1128/iai.58.3.828-832.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Glaser P., Ladant D., Sezer O., Pichot F., Ullmann A., Danchin A. The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: cloning and expression in Escherichia coli. Mol Microbiol. 1988 Jan;2(1):19–30. [PubMed] [Google Scholar]
  10. Glaser P., Sakamoto H., Bellalou J., Ullmann A., Danchin A. Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of Bordetella pertussis. EMBO J. 1988 Dec 1;7(12):3997–4004. doi: 10.1002/j.1460-2075.1988.tb03288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hackett M., Guo L., Shabanowitz J., Hunt D. F., Hewlett E. L. Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science. 1994 Oct 21;266(5184):433–435. doi: 10.1126/science.7939682. [DOI] [PubMed] [Google Scholar]
  12. Hackett M., Walker C. B., Guo L., Gray M. C., Van Cuyk S., Ullmann A., Shabanowitz J., Hunt D. F., Hewlett E. L., Sebo P. Hemolytic, but not cell-invasive activity, of adenylate cyclase toxin is selectively affected by differential fatty-acylation in Escherichia coli. J Biol Chem. 1995 Sep 1;270(35):20250–20253. doi: 10.1074/jbc.270.35.20250. [DOI] [PubMed] [Google Scholar]
  13. Hughes C., Stanley P., Koronakis V. E. coli hemolysin interactions with prokaryotic and eukaryotic cell membranes. Bioessays. 1992 Aug;14(8):519–525. doi: 10.1002/bies.950140804. [DOI] [PubMed] [Google Scholar]
  14. Iwaki M., Ullmann A., Sebo P. Identification by in vitro complementation of regions required for cell-invasive activity of Bordetella pertussis adenylate cyclase toxin. Mol Microbiol. 1995 Sep;17(6):1015–1024. doi: 10.1111/j.1365-2958.1995.mmi_17061015.x. [DOI] [PubMed] [Google Scholar]
  15. Kovalic D., Kwak J. H., Weisblum B. General method for direct cloning of DNA fragments generated by the polymerase chain reaction. Nucleic Acids Res. 1991 Aug 25;19(16):4560–4560. doi: 10.1093/nar/19.16.4560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ladant D., Michelson S., Sarfati R., Gilles A. M., Predeleanu R., Bârzu O. Characterization of the calmodulin-binding and of the catalytic domains of Bordetella pertussis adenylate cyclase. J Biol Chem. 1989 Mar 5;264(7):4015–4020. [PubMed] [Google Scholar]
  17. Lally E. T., Golub E. E., Kieba I. R. Identification and immunological characterization of the domain of Actinobacillus actinomycetemcomitans leukotoxin that determines its specificity for human target cells. J Biol Chem. 1994 Dec 9;269(49):31289–31295. [PubMed] [Google Scholar]
  18. Lo R. Y., Strathdee C. A., Shewen P. E. Nucleotide sequence of the leukotoxin genes of Pasteurella haemolytica A1. Infect Immun. 1987 Sep;55(9):1987–1996. doi: 10.1128/iai.55.9.1987-1996.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McWhinney D. R., Chang Y. F., Young R., Struck D. K. Separable domains define target cell specificities of an RTX hemolysin from Actinobacillus pleuropneumoniae. J Bacteriol. 1992 Jan;174(1):291–297. doi: 10.1128/jb.174.1.291-297.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pellett S., Welch R. A. Escherichia coli hemolysin mutants with altered target cell specificity. Infect Immun. 1996 Aug;64(8):3081–3087. doi: 10.1128/iai.64.8.3081-3087.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rogel A., Meller R., Hanski E. Adenylate cyclase toxin from Bordetella pertussis. The relationship between induction of cAMP and hemolysis. J Biol Chem. 1991 Feb 15;266(5):3154–3161. [PubMed] [Google Scholar]
  22. Rosenberg A. H., Lade B. N., Chui D. S., Lin S. W., Dunn J. J., Studier F. W. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene. 1987;56(1):125–135. doi: 10.1016/0378-1119(87)90165-x. [DOI] [PubMed] [Google Scholar]
  23. Sebo P., Glaser P., Sakamoto H., Ullmann A. High-level synthesis of active adenylate cyclase toxin of Bordetella pertussis in a reconstructed Escherichia coli system. Gene. 1991 Jul 31;104(1):19–24. doi: 10.1016/0378-1119(91)90459-o. [DOI] [PubMed] [Google Scholar]
  24. Stanley P., Koronakis V., Hardie K., Hughes C. Independent interaction of the acyltransferase HlyC with two maturation domains of the Escherichia coli toxin HlyA. Mol Microbiol. 1996 May;20(4):813–822. doi: 10.1111/j.1365-2958.1996.tb02519.x. [DOI] [PubMed] [Google Scholar]
  25. Stanley P., Packman L. C., Koronakis V., Hughes C. Fatty acylation of two internal lysine residues required for the toxic activity of Escherichia coli hemolysin. Science. 1994 Dec 23;266(5193):1992–1996. doi: 10.1126/science.7801126. [DOI] [PubMed] [Google Scholar]
  26. Strathdee C. A., Lo R. Y. Cloning, nucleotide sequence, and characterization of genes encoding the secretion function of the Pasteurella haemolytica leukotoxin determinant. J Bacteriol. 1989 Feb;171(2):916–928. doi: 10.1128/jb.171.2.916-928.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Szabo G., Gray M. C., Hewlett E. L. Adenylate cyclase toxin from Bordetella pertussis produces ion conductance across artificial lipid bilayers in a calcium- and polarity-dependent manner. J Biol Chem. 1994 Sep 9;269(36):22496–22499. [PubMed] [Google Scholar]
  28. Welch R. A. Pore-forming cytolysins of gram-negative bacteria. Mol Microbiol. 1991 Mar;5(3):521–528. doi: 10.1111/j.1365-2958.1991.tb00723.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES