Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Feb;179(3):889–898. doi: 10.1128/jb.179.3.889-898.1997

Hydrogen regulation of growth, growth yields, and methane gene transcription in Methanobacterium thermoautotrophicum deltaH.

R M Morgan 1, T D Pihl 1, J Nölling 1, J N Reeve 1
PMCID: PMC178774  PMID: 9006047

Abstract

Changes in growth rate, methanogenesis, growth yield (Y(CH4)), and methane gene transcription have been correlated with changes in the supply of H2 to Methanobacterium thermoautotrophicum deltaH cells growing on H2 plus CO2 in fed-batch cultures. Under conditions of excess H2, biomass and methanogenesis increased exponentially and in parallel, resulting in cultures with a constant Y(CH4) and transcription of the mth and mrt genes that encode the H2-dependent N5,N10-methenyltetrahydromethanopterin (methenyl-H4MPT) reductase (MTH) and methyl coenzyme M reductase II (MRII), respectively. Reducing the H2 supply, by decreasing the percentage of H2 in the input gas mixture or by reducing the mixing speed of the fermentor impeller, decreased the growth rate and resulted in lower and constant rates of methanogenesis. Under such H2-limited growth conditions, cultures grew with a continuously increasing Y(CH4) and the mtd and mcr genes that encode the reduced coenzyme F420-dependent N5,N10-methenyl-H4MPT reductase (MTD) and methyl coenzyme M reductase I (MRI), respectively, were transcribed. Changes in the kinetics of growth, methanogenesis, and methane gene transcription directed by reducing the H2 supply could be reversed by restoring a high H2 supply. Methane production continued, but at a low and constant rate, and only mcr transcripts could be detected when the H2 supply was reduced to a level insufficient for growth. ftsA transcripts, which encode coenzyme F390 synthetase, were most abundant in cells growing with high H2 availability, consistent with coenzyme F390 synthesis signaling a high exogenous supply of reductant.

Full Text

The Full Text of this article is available as a PDF (791.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alex L. A., Reeve J. N., Orme-Johnson W. H., Walsh C. T. Cloning, sequence determination, and expression of the genes encoding the subunits of the nickel-containing 8-hydroxy-5-deazaflavin reducing hydrogenase from Methanobacterium thermoautotrophicum delta H. Biochemistry. 1990 Aug 7;29(31):7237–7244. doi: 10.1021/bi00483a011. [DOI] [PubMed] [Google Scholar]
  2. Bertram P. A., Schmitz R. A., Linder D., Thauer R. K. Tungstate can substitute for molybdate in sustaining growth of Methanobacterium thermoautotrophicum. Identification and characterization of a tungsten isoenzyme of formylmethanofuran dehydrogenase. Arch Microbiol. 1994;161(3):220–228. doi: 10.1007/BF00248696. [DOI] [PubMed] [Google Scholar]
  3. Bokranz M., Bäumner G., Allmansberger R., Ankel-Fuchs D., Klein A. Cloning and characterization of the methyl coenzyme M reductase genes from Methanobacterium thermoautotrophicum. J Bacteriol. 1988 Feb;170(2):568–577. doi: 10.1128/jb.170.2.568-577.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bonacker L. G., Baudner S., Thauer R. K. Differential expression of the two methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum as determined immunochemically via isoenzyme-specific antisera. Eur J Biochem. 1992 May 15;206(1):87–92. doi: 10.1111/j.1432-1033.1992.tb16904.x. [DOI] [PubMed] [Google Scholar]
  5. Cao X. J., Krzycki J. A. Acetate-dependent methylation of two corrinoid proteins in extracts of Methanosarcina barkeri. J Bacteriol. 1991 Sep;173(17):5439–5448. doi: 10.1128/jb.173.17.5439-5448.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Conrad R., Phelps T. J., Zeikus J. G. Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments. Appl Environ Microbiol. 1985 Sep;50(3):595–601. doi: 10.1128/aem.50.3.595-601.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DiMarco A. A., Sment K. A., Konisky J., Wolfe R. S. The formylmethanofuran:tetrahydromethanopterin formyltransferase from Methanobacterium thermoautotrophicum delta H. Nucleotide sequence and functional expression of the cloned gene. J Biol Chem. 1990 Jan 5;265(1):472–476. [PubMed] [Google Scholar]
  8. Gijzen H. J., Broers C. A., Barughare M., Stumm C. K. Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the cockroach hindgut. Appl Environ Microbiol. 1991 Jun;57(6):1630–1634. doi: 10.1128/aem.57.6.1630-1634.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harms U., Weiss D. S., Gärtner P., Linder D., Thauer R. K. The energy conserving N5-methyltetrahydromethanopterin:coenzyme M methyltransferase complex from Methanobacterium thermoautotrophicum is composed of eight different subunits. Eur J Biochem. 1995 Mar 15;228(3):640–648. doi: 10.1111/j.1432-1033.1995.0640m.x. [DOI] [PubMed] [Google Scholar]
  10. Hausner W., Frey G., Thomm M. Control regions of an archaeal gene. A TATA box and an initiator element promote cell-free transcription of the tRNA(Val) gene of Methanococcus vannielii. J Mol Biol. 1991 Dec 5;222(3):495–508. doi: 10.1016/0022-2836(91)90492-o. [DOI] [PubMed] [Google Scholar]
  11. Hedderich R., Koch J., Linder D., Thauer R. K. The heterodisulfide reductase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic of pyridine-nucleotide-dependent thioredoxin reductases. Eur J Biochem. 1994 Oct 1;225(1):253–261. doi: 10.1111/j.1432-1033.1994.00253.x. [DOI] [PubMed] [Google Scholar]
  12. Hochheimer A., Schmitz R. A., Thauer R. K., Hedderich R. The tungsten formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic for enzymes containing molybdopterin dinucleotide. Eur J Biochem. 1995 Dec 15;234(3):910–920. doi: 10.1111/j.1432-1033.1995.910_a.x. [DOI] [PubMed] [Google Scholar]
  13. Jones W. J., Nagle D. P., Jr, Whitman W. B. Methanogens and the diversity of archaebacteria. Microbiol Rev. 1987 Mar;51(1):135–177. doi: 10.1128/mr.51.1.135-177.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Livingston D. J., Fox J. A., Orme-Johnson W. H., Walsh C. T. 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum: 2. Kinetic and hydrogen-transfer studies. Biochemistry. 1987 Jul 14;26(14):4228–4237. doi: 10.1021/bi00388a008. [DOI] [PubMed] [Google Scholar]
  15. Mukhopadhyay B., Purwantini E., Pihl T. D., Reeve J. N., Daniels L. Cloning, sequencing, and transcriptional analysis of the coenzyme F420-dependent methylene-5,6,7,8-tetrahydromethanopterin dehydrogenase gene from Methanobacterium thermoautotrophicum strain Marburg and functional expression in Escherichia coli. J Biol Chem. 1995 Feb 10;270(6):2827–2832. doi: 10.1074/jbc.270.6.2827. [DOI] [PubMed] [Google Scholar]
  16. Neijssel O. M., Teixeira de Mattos M. J. The energetics of bacterial growth: a reassessment. Mol Microbiol. 1994 Jul;13(2):172–182. doi: 10.1111/j.1365-2958.1994.tb00413.x. [DOI] [PubMed] [Google Scholar]
  17. Nölling J., Pihl T. D., Reeve J. N. Cloning, sequencing, and growth phase-dependent transcription of the coenzyme F420-dependent N5,N10-methylenetetrahydromethanopterin reductase-encoding genes from Methanobacterium thermoautotrophicum delta H and Methanopyrus kandleri. J Bacteriol. 1995 Dec;177(24):7238–7244. doi: 10.1128/jb.177.24.7238-7244.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nölling J., Pihl T. D., Vriesema A., Reeve J. N. Organization and growth phase-dependent transcription of methane genes in two regions of the Methanobacterium thermoautotrophicum genome. J Bacteriol. 1995 May;177(9):2460–2468. doi: 10.1128/jb.177.9.2460-2468.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nölling J., Reeve J. N. Growth- and substrate-dependent transcription of the formate dehydrogenase (fdhCAB) operon in Methanobacterium thermoformicicum Z-245. J Bacteriol. 1997 Feb;179(3):899–908. doi: 10.1128/jb.179.3.899-908.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pihl T. D., Sharma S., Reeve J. N. Growth phase-dependent transcription of the genes that encode the two methyl coenzyme M reductase isoenzymes and N5-methyltetrahydromethanopterin:coenzyme M methyltransferase in Methanobacterium thermoautotrophicum delta H. J Bacteriol. 1994 Oct;176(20):6384–6391. doi: 10.1128/jb.176.20.6384-6391.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reeve J. N., Beckler G. S., Cram D. S., Hamilton P. T., Brown J. W., Krzycki J. A., Kolodziej A. F., Alex L., Orme-Johnson W. H., Walsh C. T. A hydrogenase-linked gene in Methanobacterium thermoautotrophicum strain delta H encodes a polyferredoxin. Proc Natl Acad Sci U S A. 1989 May;86(9):3031–3035. doi: 10.1073/pnas.86.9.3031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Robinson J. A., Tiedje J. M. Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge, and sediment. Appl Environ Microbiol. 1982 Dec;44(6):1374–1384. doi: 10.1128/aem.44.6.1374-1384.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rospert S., Linder D., Ellermann J., Thauer R. K. Two genetically distinct methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum strain Marburg and delta H. Eur J Biochem. 1990 Dec 27;194(3):871–877. doi: 10.1111/j.1432-1033.1990.tb19481.x. [DOI] [PubMed] [Google Scholar]
  24. Seely R. J., Fahrney D. E. Levels of cyclic-2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum during phosphate limitation. J Bacteriol. 1984 Oct;160(1):50–54. doi: 10.1128/jb.160.1.50-54.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stettler R., Leisinger T. Physical map of the Methanobacterium thermoautotrophicum Marburg chromosome. J Bacteriol. 1992 Nov;174(22):7227–7234. doi: 10.1128/jb.174.22.7227-7234.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Vaupel M., Dietz H., Linder D., Thauer R. K. Primary structure of cyclohydrolase (Mch) from Methanobacterium thermoautotrophicum (strain Marburg) and functional expression of the mch gene in Escherichia coli. Eur J Biochem. 1996 Feb 15;236(1):294–300. doi: 10.1111/j.1432-1033.1996.00294.x. [DOI] [PubMed] [Google Scholar]
  27. Vaupel M., Thauer R. K. Coenzyme F420-dependent N5,N10-methylenetetrahydromethanopterin reductase (Mer) from Methanobacterium thermoautotrophicum strain Marburg. Cloning, sequencing, transcriptional analysis, and functional expression in Escherichia coli of the mer gene. Eur J Biochem. 1995 Aug 1;231(3):773–778. doi: 10.1111/j.1432-1033.1995.0773d.x. [DOI] [PubMed] [Google Scholar]
  28. Vermeij P., Detmers F. J., Broers F. J., Keltjens J. T., Van der Drift C. Purification and characterization of coenzyme F390 synthetase from Methanobacterium thermoautotrophicum (strain delta H). Eur J Biochem. 1994 Nov 15;226(1):185–191. doi: 10.1111/j.1432-1033.1994.tb20040.x. [DOI] [PubMed] [Google Scholar]
  29. Vermeij P., Vinke E., Keltjens J. T., Van der Drift C. Purification and properties of coenzyme F390 hydrolase from Methanobacterium thermoautotrophicum (strain Marburg). Eur J Biochem. 1995 Dec 1;234(2):592–597. doi: 10.1111/j.1432-1033.1995.592_b.x. [DOI] [PubMed] [Google Scholar]
  30. Vermeij P., van der Steen R. J., Keltjens J. T., Vogels G. D., Leisinger T. Coenzyme F390 synthetase from Methanobacterium thermoautotrophicum Marburg belongs to the superfamily of adenylate-forming enzymes. J Bacteriol. 1996 Jan;178(2):505–510. doi: 10.1128/jb.178.2.505-510.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zeikus J. G., Wolfe R. S. Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol. 1972 Feb;109(2):707–715. doi: 10.1128/jb.109.2.707-713.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zirngibl C., Van Dongen W., Schwörer B., Von Bünau R., Richter M., Klein A., Thauer R. K. H2-forming methylenetetrahydromethanopterin dehydrogenase, a novel type of hydrogenase without iron-sulfur clusters in methanogenic archaea. Eur J Biochem. 1992 Sep 1;208(2):511–520. doi: 10.1111/j.1432-1033.1992.tb17215.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES