Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Feb;179(4):1059–1067. doi: 10.1128/jb.179.4.1059-1067.1997

Mutational analysis of protein binding sites involved in formation of the bacteriophage lambda attL complex.

M MacWilliams 1, R I Gumport 1, J F Gardner 1
PMCID: PMC178798  PMID: 9023184

Abstract

Bacteriophage lambda site-specific recombination requires the formation of higher-order protein-DNA complexes to accomplish synapsis of the partner attachment (att) sites as well as for the regulation of the integration and excision reactions. The att sites are composed of a core region, the actual site of strand exchange, and flanking arm regions. The attL site consists of two core sites (C and C'), an integration host factor (IHF) binding site (H'), and three contiguous Int binding arm sites (P'1, P'2, and P'3). In this study, we employed bacteriophage P22 challenge phages to determine which protein binding sites participate in attL complex formation in vivo. The C', H', and P'1 sites were critical, because mutations in these sites severely disrupted formation of the attL complex. Mutations in the C and P'2 sites were less severe, and alteration of the P'3 site had no effect on complex formation. These results support a model in which IHF, bound to the H' site, bends the attL DNA so that the Int molecule bound to P'1 also interacts with the C' core site. This bridged complex, along with a second Int molecule bound to P'2, helps to stabilize the interaction of a third Int with the C core site. The results also indicate that nonspecific DNA binding is a significant component of the Int-core interactions and that the cooperativity of Int binding can overcome the effects of mutations in the individual arm sites and core sites.

Full Text

The Full Text of this article is available as a PDF (142.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benson N., Sugiono P., Bass S., Mendelman L. V., Youderian P. General selection for specific DNA-binding activities. Genetics. 1986 Sep;114(1):1–14. doi: 10.1093/genetics/114.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bushman W., Thompson J. F., Vargas L., Landy A. Control of directionality in lambda site specific recombination. Science. 1985 Nov 22;230(4728):906–911. doi: 10.1126/science.2932798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Craig N. L. The mechanism of conservative site-specific recombination. Annu Rev Genet. 1988;22:77–105. doi: 10.1146/annurev.ge.22.120188.000453. [DOI] [PubMed] [Google Scholar]
  4. Hales L. M., Gumport R. I., Gardner J. F. Determining the DNA sequence elements required for binding integration host factor to two different target sites. J Bacteriol. 1994 May;176(10):2999–3006. doi: 10.1128/jb.176.10.2999-3006.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hales L. M., Gumport R. I., Gardner J. F. Mutants of Escherichia coli integration host factor: DNA-binding and recombination properties. Biochimie. 1994;76(10-11):1030–1040. doi: 10.1016/0300-9084(94)90027-2. [DOI] [PubMed] [Google Scholar]
  6. Han Y. W., Gumport R. I., Gardner J. F. Complementation of bacteriophage lambda integrase mutants: evidence for an intersubunit active site. EMBO J. 1993 Dec;12(12):4577–4584. doi: 10.1002/j.1460-2075.1993.tb06146.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Han Y. W., Gumport R. I., Gardner J. F. Mapping the functional domains of bacteriophage lambda integrase protein. J Mol Biol. 1994 Jan 21;235(3):908–925. doi: 10.1006/jmbi.1994.1048. [DOI] [PubMed] [Google Scholar]
  8. Kim S., Landy A. Lambda Int protein bridges between higher order complexes at two distant chromosomal loci attL and attR. Science. 1992 Apr 10;256(5054):198–203. doi: 10.1126/science.1533056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kim S., Moitoso de Vargas L., Nunes-Düby S. E., Landy A. Mapping of a higher order protein-DNA complex: two kinds of long-range interactions in lambda attL. Cell. 1990 Nov 16;63(4):773–781. doi: 10.1016/0092-8674(90)90143-3. [DOI] [PubMed] [Google Scholar]
  10. Landy A. Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu Rev Biochem. 1989;58:913–949. doi: 10.1146/annurev.bi.58.070189.004405. [DOI] [PubMed] [Google Scholar]
  11. Lee E. C., Gumport R. I., Gardner J. F. Genetic analysis of bacteriophage lambda integrase interactions with arm-type attachment site sequences. J Bacteriol. 1990 Mar;172(3):1529–1538. doi: 10.1128/jb.172.3.1529-1538.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lee E. C., MacWilliams M. P., Gumport R. I., Gardner J. F. Genetic analysis of Escherichia coli integration host factor interactions with its bacteriophage lambda H' recognition site. J Bacteriol. 1991 Jan;173(2):609–617. doi: 10.1128/jb.173.2.609-617.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MacWilliams M. P., Celander D. W., Gardner J. F. Direct genetic selection for a specific RNA-protein interaction. Nucleic Acids Res. 1993 Dec 11;21(24):5754–5760. doi: 10.1093/nar/21.24.5754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MacWilliams M. P., Gumport R. I., Gardner J. F. Genetic analysis of the bacteriophage lambda attL nucleoprotein complex. Genetics. 1996 Jul;143(3):1069–1079. doi: 10.1093/genetics/143.3.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moitoso de Vargas L., Kim S., Landy A. DNA looping generated by DNA bending protein IHF and the two domains of lambda integrase. Science. 1989 Jun 23;244(4911):1457–1461. doi: 10.1126/science.2544029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moitoso de Vargas L., Pargellis C. A., Hasan N. M., Bushman E. W., Landy A. Autonomous DNA binding domains of lambda integrase recognize two different sequence families. Cell. 1988 Sep 23;54(7):923–929. doi: 10.1016/0092-8674(88)90107-9. [DOI] [PubMed] [Google Scholar]
  17. Numrych T. E., Gumport R. I., Gardner J. F. A comparison of the effects of single-base and triple-base changes in the integrase arm-type binding sites on the site-specific recombination of bacteriophage lambda. Nucleic Acids Res. 1990 Jul 11;18(13):3953–3959. doi: 10.1093/nar/18.13.3953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nunes-Düby S. E., Smith-Mungo L. I., Landy A. Single base-pair precision and structural rigidity in a small IHF-induced DNA loop. J Mol Biol. 1995 Oct 20;253(2):228–242. doi: 10.1006/jmbi.1995.0548. [DOI] [PubMed] [Google Scholar]
  19. Perry K. L., Walker G. C. Identification of plasmid (pKM101)-coded proteins involved in mutagenesis and UV resistance. Nature. 1982 Nov 18;300(5889):278–281. doi: 10.1038/300278a0. [DOI] [PubMed] [Google Scholar]
  20. Richet E., Abcarian P., Nash H. A. Synapsis of attachment sites during lambda integrative recombination involves capture of a naked DNA by a protein-DNA complex. Cell. 1988 Jan 15;52(1):9–17. doi: 10.1016/0092-8674(88)90526-0. [DOI] [PubMed] [Google Scholar]
  21. Ross W., Landy A. Bacteriophage lambda int protein recognizes two classes of sequence in the phage att site: characterization of arm-type sites. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7724–7728. doi: 10.1073/pnas.79.24.7724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ross W., Landy A. Patterns of lambda Int recognition in the regions of strand exchange. Cell. 1983 May;33(1):261–272. doi: 10.1016/0092-8674(83)90355-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thompson J. F., de Vargas L. M., Skinner S. E., Landy A. Protein-protein interactions in a higher-order structure direct lambda site-specific recombination. J Mol Biol. 1987 Jun 5;195(3):481–493. doi: 10.1016/0022-2836(87)90177-x. [DOI] [PubMed] [Google Scholar]
  24. Winoto A., Chung S., Abraham J., Echols H. Directional control of site-specific recombination by bacteriophage lambda. Evidence that a binding site for Int protein far from the crossover point is required for integrative but not excisive recombination. J Mol Biol. 1986 Dec 5;192(3):677–680. doi: 10.1016/0022-2836(86)90286-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES