Abstract
Zymomonas mobilis is endowed with two isoenzymes of fermentative alcohol dehydrogenase, a zinc-containing enzyme (ADH I) and an iron-containing enzyme (ADH II). The activity of ADH I remains fully conserved, while ADH II activity decays when anaerobic cultures are shifted to aerobiosis. This differential response depends on the metal present on each isoenzyme, since pure preparations of ADH I are resistant to oxidative inactivation and preparations of zinc-containing ADH II, obtained by incubation of pure ADH II with ZnCl2, showed no modification of the target for oxidative damage (His277-containing peptide). It was consistently found that the activity of the zinc-containing ADH II, once submitted to oxidative treatment, was fully restored when iron was reintroduced into the enzyme structure. These results indicate that zinc bound to these proteins plays an important role in the protection of their active centers against oxidative damage and may have relevant biochemical and physiological consequences in this species.
Full Text
The Full Text of this article is available as a PDF (84.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becker A. B., Roth R. A. Identification of glutamate-169 as the third zinc-binding residue in proteinase III, a member of the family of insulin-degrading enzymes. Biochem J. 1993 May 15;292(Pt 1):137–142. doi: 10.1042/bj2920137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bode W., Gomis-Rüth F. X., Stöckler W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the 'metzincins'. FEBS Lett. 1993 Sep 27;331(1-2):134–140. doi: 10.1016/0014-5793(93)80312-i. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Bray T. M., Bettger W. J. The physiological role of zinc as an antioxidant. Free Radic Biol Med. 1990;8(3):281–291. doi: 10.1016/0891-5849(90)90076-u. [DOI] [PubMed] [Google Scholar]
- Cabiscol E., Aguilar J., Ros J. Metal-catalyzed oxidation of Fe2+ dehydrogenases. Consensus target sequence between propanediol oxidoreductase of Escherichia coli and alcohol dehydrogenase II of Zymomonas mobilis. J Biol Chem. 1994 Mar 4;269(9):6592–6597. [PubMed] [Google Scholar]
- Cabiscol E., Badia J., Baldoma L., Hidalgo E., Aguilar J., Ros J. Inactivation of propanediol oxidoreductase of Escherichia coli by metal-catalyzed oxidation. Biochim Biophys Acta. 1992 Jan 9;1118(2):155–160. doi: 10.1016/0167-4838(92)90144-3. [DOI] [PubMed] [Google Scholar]
- Conway T., Ingram L. O. Similarity of Escherichia coli propanediol oxidoreductase (fucO product) and an unusual alcohol dehydrogenase from Zymomonas mobilis and Saccharomyces cerevisiae. J Bacteriol. 1989 Jul;171(7):3754–3759. doi: 10.1128/jb.171.7.3754-3759.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jörnvall H., Persson B., Jeffery J. Characteristics of alcohol/polyol dehydrogenases. The zinc-containing long-chain alcohol dehydrogenases. Eur J Biochem. 1987 Sep 1;167(2):195–201. doi: 10.1111/j.1432-1033.1987.tb13323.x. [DOI] [PubMed] [Google Scholar]
- Keshav K. F., Yomano L. P., An H. J., Ingram L. O. Cloning of the Zymomonas mobilis structural gene encoding alcohol dehydrogenase I (adhA): sequence comparison and expression in Escherichia coli. J Bacteriol. 1990 May;172(5):2491–2497. doi: 10.1128/jb.172.5.2491-2497.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine R. L., Williams J. A., Stadtman E. R., Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 1994;233:346–357. doi: 10.1016/s0076-6879(94)33040-9. [DOI] [PubMed] [Google Scholar]
- Mackenzie K. F., Eddy C. K., Ingram L. O. Modulation of alcohol dehydrogenase isoenzyme levels in Zymomonas mobilis by iron and zinc. J Bacteriol. 1989 Feb;171(2):1063–1067. doi: 10.1128/jb.171.2.1063-1067.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neale A. D., Scopes R. K., Kelly J. M., Wettenhall R. E. The two alcohol dehydrogenases of Zymomonas mobilis. Purification by differential dye ligand chromatography, molecular characterisation and physiological roles. Eur J Biochem. 1986 Jan 2;154(1):119–124. doi: 10.1111/j.1432-1033.1986.tb09366.x. [DOI] [PubMed] [Google Scholar]
- Reid M. F., Fewson C. A. Molecular characterization of microbial alcohol dehydrogenases. Crit Rev Microbiol. 1994;20(1):13–56. doi: 10.3109/10408419409113545. [DOI] [PubMed] [Google Scholar]
- Stadtman E. R. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem. 1993;62:797–821. doi: 10.1146/annurev.bi.62.070193.004053. [DOI] [PubMed] [Google Scholar]
- Suzuki H., Kishimoto K., Yoshimoto T., Yamamoto S., Kanai F., Ebina Y., Miyatake A., Tanabe T. Site-directed mutagenesis studies on the iron-binding domain and the determinant for the substrate oxygenation site of porcine leukocyte arachidonate 12-lipoxygenase. Biochim Biophys Acta. 1994 Jan 20;1210(3):308–316. doi: 10.1016/0005-2760(94)90234-8. [DOI] [PubMed] [Google Scholar]
- Wilkins G. M., Leake D. S. The oxidation of low density lipoprotein by cells or iron is inhibited by zinc. FEBS Lett. 1994 Mar 21;341(2-3):259–262. doi: 10.1016/0014-5793(94)80468-0. [DOI] [PubMed] [Google Scholar]