Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Feb;179(4):1186–1192. doi: 10.1128/jb.179.4.1186-1192.1997

Utilization of phosphocholine from extracellular complex polysaccharide as a source of cytoplasmic choline derivatives in Penicillium fellutanum.

Y I Park 1, M L Buszko 1, J E Gander 1
PMCID: PMC178815  PMID: 9023201

Abstract

Penicillium fellutanum produces a phosphorylated, choline-containing extracellular polysaccharide, peptidophosphogalactomannan (pP(x)GM) [where x is the number of phosphodiester residues]). The 13C-methyl-labeled pP(x)GM ([methyl-13C]pP(x)GM) was prepared from the cultures supplemented with L-[methyl-13C]methionine and was used as a probe to monitor the fate of phosphocholine in this polymer. The addition of [methyl-13C]pP(x)GM to growing cultures in low-phosphate medium resulted in the disappearance within 5 days of [methyl-13C]phosphocholine and N,N'-dimethylphosphoethanolamine from the added [methyl-13C]pP(x)GM. Two 13C-methyl-enriched cytoplasmic solutes, choline-O-sulfate and glycine betaine, were found in mycelial extracts, suggesting that phosphocholine-containing extracellular pP(x)GM of P. fellutanum is a precursor of intracellular choline-O-sulfate and glycine betaine. The mycelia cultured in low-phosphate (2 mM) medium contained glycine betaine and 1.5-fold more choline-O-sulfate than those grown in high-phosphate (20 mM) medium. The high levels of extracellular nonspecific phosphocholine:phosphocholine hydrolase and acid phosphomonoesterase observed in the low-phosphate culture medium are likely related to the release of phosphocholine from pP(x)GM and hydrolysis of phosphocholine, respectively. These results suggest that extracellular pP(x)GM of P. fellutanum provides phosphate needed as the environment becomes depleted of this nutrient. Choline, in excess of that needed immediately, is stored in the cytoplasm in forms that can be reutilized.

Full Text

The Full Text of this article is available as a PDF (125.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballou C. Structure and biosynthesis of the mannan component of the yeast cell envelope. Adv Microb Physiol. 1976;14(11):93–158. doi: 10.1016/s0065-2911(08)60227-1. [DOI] [PubMed] [Google Scholar]
  2. Clutterbuck P. W., Haworth W. N., Raistrick H., Smith G., Stacey M. Studies in the biochemistry of micro-organisms: The metabolic products of Penicillium Charlesii G. Smith. Biochem J. 1934;28(1):94–110. doi: 10.1042/bj0280094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gander J. E. Fungal cell wall glycoproteins and peptido-polysaccharides. Annu Rev Microbiol. 1974;28(0):103–119. doi: 10.1146/annurev.mi.28.100174.000535. [DOI] [PubMed] [Google Scholar]
  4. Gander J. E., Jentoft N. H., Drewes L. R., Rick P. D. The 5-O-beta-D-galactofuranosyl-containing exocellular glycopeptide of Penicillium charlesii. Characterization of the phosphogalactomannan. J Biol Chem. 1974 Apr 10;249(7):2063–2072. [PubMed] [Google Scholar]
  5. Halverson L. J., Stacey G. Signal exchange in plant-microbe interactions. Microbiol Rev. 1986 Jun;50(2):193–225. doi: 10.1128/mr.50.2.193-225.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Horne D. S., Tomasz A. Possible role of a choline-containing teichoic acid in the maintenance of normal cell shape and physiology in Streptococcus oralis. J Bacteriol. 1993 Mar;175(6):1717–1722. doi: 10.1128/jb.175.6.1717-1722.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Höltje J. V., Tomasz A. Specific recognition of choline residues in the cell wall teichoic acid by the N-acetylmuramyl-L-alanine amidase of Pneumococcus. J Biol Chem. 1975 Aug 10;250(15):6072–6076. [PubMed] [Google Scholar]
  8. JEANES A., PITTSLEY J. E., WATSON P. R., DIMLER R. J. Characterization and properties of the phosphomannan from Hansenula hostii NRRL Y-2448. Arch Biochem Biophys. 1961 Feb;92:343–350. doi: 10.1016/0003-9861(61)90359-9. [DOI] [PubMed] [Google Scholar]
  9. Leal J. A., Guerrero C., Gómez-Miranda B., Prieto A., Bernabé M. Chemical and structural similarities in wall polysaccharides of some Penicillium, Eupenicillium and Aspergillus species. FEMS Microbiol Lett. 1992 Jan 1;69(2):165–168. doi: 10.1016/0378-1097(92)90622-u. [DOI] [PubMed] [Google Scholar]
  10. Markham P., Robson G. D., Bainbridge B. W., Trinci A. P. Choline: its role in the growth of filamentous fungi and the regulation of mycelial morphology. FEMS Microbiol Rev. 1993 Apr;10(3-4):287–300. doi: 10.1111/j.1574-6968.1993.tb05872.x. [DOI] [PubMed] [Google Scholar]
  11. Mosser J. L., Tomasz A. Choline-containing teichoic acid as a structural component of pneumococcal cell wall and its role in sensitivity to lysis by an autolytic enzyme. J Biol Chem. 1970 Jan 25;245(2):287–298. [PubMed] [Google Scholar]
  12. Preston J. F., 3rd, Lapis E., Gander J. E. Isolation and partial characterization of the exocellular polysaccharides of Penicillium charlesii. 3. Heterogeneity in size and composition of high molecular weight exocellular polysaccharides. Arch Biochem Biophys. 1969 Nov;134(2):324–334. doi: 10.1016/0003-9861(69)90291-4. [DOI] [PubMed] [Google Scholar]
  13. Rick P. D., Drewes L. R., Gander J. E. The 5-O-beta-D-galactofuranosyl-containing exocellular glycopeptide of Penicillium charlesii. Occurrence of ethanolamine and partial characterization of the peptide portion and the carbohydrate-peptide linkage. J Biol Chem. 1974 Apr 10;249(7):2073–2078. [PubMed] [Google Scholar]
  14. Rietschel-Berst M., Jentoft N. H., Rick P. D., Pletcher C., Fang F., Gander J. E. Extracellular exo-beta-galactofuranosidase from Penicillium charlesii: isolation, purification, and properties. J Biol Chem. 1977 May 25;252(10):3219–3226. [PubMed] [Google Scholar]
  15. Rolin D. B., Pfeffer P. E., Osman S. F., Szwergold B. S., Kappler F., Benesi A. J. Structural studies of a phosphocholine substituted beta-(1,3);(1,6) macrocyclic glucan from Bradyrhizobium japonicum USDA 110. Biochim Biophys Acta. 1992 Jun 12;1116(3):215–225. doi: 10.1016/0304-4165(92)90014-l. [DOI] [PubMed] [Google Scholar]
  16. SLODKI M. E. Phosphate linkages in phosphomannans from yeast. Biochim Biophys Acta. 1962 Mar 12;57:525–533. doi: 10.1016/0006-3002(62)91160-5. [DOI] [PubMed] [Google Scholar]
  17. Tomasz A. Choline in the cell wall of a bacterium: novel type of polymer-linked choline in Pneumococcus. Science. 1967 Aug 11;157(3789):694–697. doi: 10.1126/science.157.3789.694. [DOI] [PubMed] [Google Scholar]
  18. Unkefer C. J., Gander J. E. The 5-O-beta-D-galactofuranosyl-containing glycopeptide from Penicillium charlesii. Carbon 13 nuclear magnetic resonance studies. J Biol Chem. 1979 Dec 10;254(23):12131–12135. [PubMed] [Google Scholar]
  19. Unkefer C. J., Jackson C., Gander J. E. The 5-O-beta-D-galactofuranosyl-containing glycopeptide from Penicillium charlesii. Identification of phosphocholine attached to C-6 of mannopyranosyl residues of the mannan region. J Biol Chem. 1982 Mar 10;257(5):2491–2497. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES