Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Feb;179(4):1274–1279. doi: 10.1128/jb.179.4.1274-1279.1997

An Na+-pumping V1V0-ATPase complex in the thermophilic bacterium Clostridium fervidus.

K Höner zu Bentrup 1, T Ubbink-Kok 1, J S Lolkema 1, W N Konings 1
PMCID: PMC178826  PMID: 9023212

Abstract

Energy transduction in the anaerobic, thermophilic bacterium Clostridium fervidus relies exclusively on Na+ as the coupling ion. The Na+ ion gradient across the membrane is generated by a membrane-bound ATPase (G. Speelmans, B. Poolman, T. Abee, and W. N. Konings, J. Bacteriol. 176:5160-5162, 1994). The Na+-ATPase complex was purified to homogeneity. It migrates as a single band in native polyacrylamide gel electrophoresis and catalyzes Na+-stimulated ATPase activity. Denaturing gel electrophoresis showed that the complex consists of at least six different polypeptides with apparent molecular sizes of 66, 61, 51, 37, 26, and 17 kDa. The N-terminal sequences of the 66- and 51-kDa subunits were found to be significantly homologous to subunits A and B, respectively, of the Na+-translocating V-type ATPase of Enterococcus hirae. The purified V1V0 protein complex was reconstituted in a mixture of Escherichia coli phosphatidylethanolamine and egg yolk phosphatidylcholine and shown to catalyze the uptake of Na+ ions upon hydrolysis of ATP. Na+ transport was completely abolished by monensin, whereas valinomycin stimulated the uptake rate. This is indicative of electrogenic sodium transport. The presence of the protonophore SF6847 had no significant effect on the uptake, indicating that Na+ translocation is a primary event and in the cell is not accomplished by an H+-translocating pump in combination with an Na+-H+ antiporter.

Full Text

The Full Text of this article is available as a PDF (419.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowman E. J., Tenney K., Bowman B. J. Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-1 encoding the 67-kDa subunit reveals homology to other ATPases. J Biol Chem. 1988 Oct 5;263(28):13994–14001. [PubMed] [Google Scholar]
  2. Denda K., Konishi J., Oshima T., Date T., Yoshida M. Molecular cloning of the beta-subunit of a possible non-F0F1 type ATP synthase from the acidothermophilic archaebacterium, Sulfolobus acidocaldarius. J Biol Chem. 1988 Nov 25;263(33):17251–17254. [PubMed] [Google Scholar]
  3. Driessen A. J., Brundage L., Hendrick J. P., Schiebel E., Wickner W. Preprotein translocase of Escherichia coli: solubilization, purification, and reconstitution of the integral membrane subunits SecY/E. Methods Cell Biol. 1991;34:147–165. doi: 10.1016/s0091-679x(08)61679-9. [DOI] [PubMed] [Google Scholar]
  4. Dulley J. R., Grieve P. A. A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Anal Biochem. 1975 Mar;64(1):136–141. doi: 10.1016/0003-2697(75)90415-7. [DOI] [PubMed] [Google Scholar]
  5. Efiok B. J., Webster D. A. Sodium-coupled ATP synthesis in the bacterium Vitreoscilla. Arch Biochem Biophys. 1992 Jan;292(1):102–106. doi: 10.1016/0003-9861(92)90056-3. [DOI] [PubMed] [Google Scholar]
  6. Forster A., Daniel R., Müller V. The Na(+)-translocating ATPase of Acetobacterium woodii is a F1F0-type enzyme as deduced from the primary structure of its beta, gamma and epsilon subunits. Biochim Biophys Acta. 1995 May 10;1229(3):393–397. doi: 10.1016/0005-2728(95)00037-j. [DOI] [PubMed] [Google Scholar]
  7. Ihara K, Abe T, Sugimura KI, Mukohata Y. HALOBACTERIAL A-ATP SYNTHASE IN RELATION TO V-ATPase. J Exp Biol. 1992 Nov 1;172(Pt 1):475–485. doi: 10.1242/jeb.172.1.475. [DOI] [PubMed] [Google Scholar]
  8. Kakinuma Y., Igarashi K. Electrogenic Na+ transport by Enterococcus hirae Na(+)-ATPase. FEBS Lett. 1995 Feb 13;359(2-3):255–258. doi: 10.1016/0014-5793(95)00056-f. [DOI] [PubMed] [Google Scholar]
  9. Krumholz L. R., Esser U., Simoni R. D. Characterization of the genes coding for the F1F0 subunits of the sodium dependent ATPase of Propionigenium modestum. FEMS Microbiol Lett. 1992 Feb 1;70(1):37–41. doi: 10.1016/0378-1097(92)90559-7. [DOI] [PubMed] [Google Scholar]
  10. Krumholz L. R., Esser U., Simoni R. D. Nucleotide sequence of the unc operon of Vibrio alginolyticus. Nucleic Acids Res. 1989 Oct 11;17(19):7993–7994. doi: 10.1093/nar/17.19.7993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Laubinger W., Dimroth P. Characterization of the ATP synthase of Propionigenium modestum as a primary sodium pump. Biochemistry. 1988 Sep 20;27(19):7531–7537. doi: 10.1021/bi00419a053. [DOI] [PubMed] [Google Scholar]
  12. Murata T., Takase K., Yamato I., Igarashi K., Kakinuma Y. The ntpJ gene in the Enterococcus hirae ntp operon encodes a component of KtrII potassium transport system functionally independent of vacuolar Na+-ATPase. J Biol Chem. 1996 Apr 26;271(17):10042–10047. doi: 10.1074/jbc.271.17.10042. [DOI] [PubMed] [Google Scholar]
  13. Nelson H., Mandiyan S., Nelson N. A conserved gene encoding the 57-kDa subunit of the yeast vacuolar H+-ATPase. J Biol Chem. 1989 Jan 25;264(3):1775–1778. [PubMed] [Google Scholar]
  14. Nelson N. The vacuolar H(+)-ATPase--one of the most fundamental ion pumps in nature. J Exp Biol. 1992 Nov;172:19–27. doi: 10.1242/jeb.172.1.19. [DOI] [PubMed] [Google Scholar]
  15. Ohta S., Yohda M., Ishizuka M., Hirata H., Hamamoto T., Otawara-Hamamoto Y., Matsuda K., Kagawa Y. Sequence and over-expression of subunits of adenosine triphosphate synthase in thermophilic bacterium PS3. Biochim Biophys Acta. 1988 Mar 30;933(1):141–155. doi: 10.1016/0005-2728(88)90064-3. [DOI] [PubMed] [Google Scholar]
  16. Reidlinger J., Müller V. Purification of ATP synthase from Acetobacterium woodii and identification as a Na(+)-translocating F1F0-type enzyme. Eur J Biochem. 1994 Jul 1;223(1):275–283. doi: 10.1111/j.1432-1033.1994.tb18992.x. [DOI] [PubMed] [Google Scholar]
  17. Richard P., Rigaud J. L., Gräber P. Reconstitution of CF0F1 into liposomes using a new reconstitution procedure. Eur J Biochem. 1990 Nov 13;193(3):921–925. doi: 10.1111/j.1432-1033.1990.tb19418.x. [DOI] [PubMed] [Google Scholar]
  18. Schägger H., von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem. 1991 Dec;199(2):223–231. doi: 10.1016/0003-2697(91)90094-a. [DOI] [PubMed] [Google Scholar]
  19. Senior A. E. The proton-translocating ATPase of Escherichia coli. Annu Rev Biophys Biophys Chem. 1990;19:7–41. doi: 10.1146/annurev.bb.19.060190.000255. [DOI] [PubMed] [Google Scholar]
  20. Speelmans G., Poolman B., Abee T., Konings W. N. Energy transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7975–7979. doi: 10.1073/pnas.90.17.7975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Speelmans G., Poolman B., Abee T., Konings W. N. The F- or V-type Na(+)-ATPase of the thermophilic bacterium Clostridium fervidus. J Bacteriol. 1994 Aug;176(16):5160–5162. doi: 10.1128/jb.176.16.5160-5162.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Speelmans G., Poolman B., Konings W. N. Amino acid transport in the thermophilic anaerobe Clostridium fervidus is driven by an electrochemical sodium gradient. J Bacteriol. 1993 Apr;175(7):2060–2066. doi: 10.1128/jb.175.7.2060-2066.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Takase K., Kakinuma S., Yamato I., Konishi K., Igarashi K., Kakinuma Y. Sequencing and characterization of the ntp gene cluster for vacuolar-type Na(+)-translocating ATPase of Enterococcus hirae. J Biol Chem. 1994 Apr 15;269(15):11037–11044. [PubMed] [Google Scholar]
  24. Takase K., Yamato I., Kakinuma Y. Cloning and sequencing of the genes coding for the A and B subunits of vacuolar-type Na(+)-ATPase from Enterococcus hirae. Coexistence of vacuolar- and F0F1-type ATPases in one bacterial cell. J Biol Chem. 1993 Jun 5;268(16):11610–11616. [PubMed] [Google Scholar]
  25. Tsutsumi S., Denda K., Yokoyama K., Oshima T., Date T., Yoshida M. Molecular cloning of genes encoding major two subunits of a eubacterial V-type ATPase from Thermus thermophilus. Biochim Biophys Acta. 1991 Dec 3;1098(1):13–20. [PubMed] [Google Scholar]
  26. Walker J. E., Fearnley I. M., Gay N. J., Gibson B. W., Northrop F. D., Powell S. J., Runswick M. J., Saraste M., Tybulewicz V. L. Primary structure and subunit stoichiometry of F1-ATPase from bovine mitochondria. J Mol Biol. 1985 Aug 20;184(4):677–701. doi: 10.1016/0022-2836(85)90313-4. [DOI] [PubMed] [Google Scholar]
  27. Walker J. E., Gay N. J., Saraste M., Eberle A. N. DNA sequence around the Escherichia coli unc operon. Completion of the sequence of a 17 kilobase segment containing asnA, oriC, unc, glmS and phoS. Biochem J. 1984 Dec 15;224(3):799–815. doi: 10.1042/bj2240799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Walker J. E., Saraste M., Gay N. J. The unc operon. Nucleotide sequence, regulation and structure of ATP-synthase. Biochim Biophys Acta. 1984 Sep 6;768(2):164–200. doi: 10.1016/0304-4173(84)90003-x. [DOI] [PubMed] [Google Scholar]
  29. Yokoyama K., Akabane Y., Ishii N., Yoshida M. Isolation of prokaryotic V0V1-ATPase from a thermophilic eubacterium Thermus thermophilus. J Biol Chem. 1994 Apr 22;269(16):12248–12253. [PubMed] [Google Scholar]
  30. Yokoyama K., Oshima T., Yoshida M. Thermus thermophilus membrane-associated ATPase. Indication of a eubacterial V-type ATPase. J Biol Chem. 1990 Dec 15;265(35):21946–21950. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES