Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Feb;179(4):1404–1408. doi: 10.1128/jb.179.4.1404-1408.1997

Identification of the epitope for a highly cross-reactive monoclonal antibody on the major sigma factor of bacterial RNA polymerase.

M J Breyer 1, N E Thompson 1, R R Burgess 1
PMCID: PMC178843  PMID: 9023229

Abstract

A highly cross-reactive monoclonal antibody (MAb), 2G10, was found to react in a conserved region of Escherichia coli RNA polymerase sigma70. The epitope was localized to amino acids 470 to 486, which included part of conserved region 3.1. The epitope for MAb 3D3, a MAb which maps close to the 2G10 epitope, was also determined.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowser C. A., Hanna M. M. Sigma subunit of Escherichia coli RNA polymerase loses contacts with the 3' end of the nascent RNA after synthesis of a tetranucleotide. J Mol Biol. 1991 Jul 20;220(2):227–239. doi: 10.1016/0022-2836(91)90009-u. [DOI] [PubMed] [Google Scholar]
  2. Gribskov M., Burgess R. R. Overexpression and purification of the sigma subunit of Escherichia coli RNA polymerase. Gene. 1983 Dec;26(2-3):109–118. doi: 10.1016/0378-1119(83)90180-4. [DOI] [PubMed] [Google Scholar]
  3. Hernandez V. J., Cashel M. Changes in conserved region 3 of Escherichia coli sigma 70 mediate ppGpp-dependent functions in vivo. J Mol Biol. 1995 Oct 6;252(5):536–549. doi: 10.1006/jmbi.1995.0518. [DOI] [PubMed] [Google Scholar]
  4. Jovanovich S. B., Lesley S. A., Burgess R. R. In vitro use of monoclonal antibodies in Escherichia coli S-30 extracts to determine the RNA polymerase sigma subunit required by a promoter. J Biol Chem. 1989 Mar 5;264(7):3794–3798. [PubMed] [Google Scholar]
  5. Karls R. K., Jin D. J., Donohue T. J. Transcription properties of RNA polymerase holoenzymes isolated from the purple nonsulfur bacterium Rhodobacter sphaeroides. J Bacteriol. 1993 Dec;175(23):7629–7638. doi: 10.1128/jb.175.23.7629-7638.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Klimpel K. W., Lesley S. A., Clark V. L. Identification of subunits of gonococcal RNA polymerase by immunoblot analysis: evidence for multiple sigma factors. J Bacteriol. 1989 Jul;171(7):3713–3718. doi: 10.1128/jb.171.7.3713-3718.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Koehler J. E., Burgess R. R., Thompson N. E., Stephens R. S. Chlamydia trachomatis RNA polymerase major sigma subunit. Sequence and structural comparison of conserved and unique regions with Escherichia coli sigma 70 and Bacillus subtilis sigma 43. J Biol Chem. 1990 Aug 5;265(22):13206–13214. [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Lesley S. A., Brow M. A., Burgess R. R. Use of in vitro protein synthesis from polymerase chain reaction-generated templates to study interaction of Escherichia coli transcription factors with core RNA polymerase and for epitope mapping of monoclonal antibodies. J Biol Chem. 1991 Feb 5;266(4):2632–2638. [PubMed] [Google Scholar]
  10. Lesley S. A., Burgess R. R. Characterization of the Escherichia coli transcription factor sigma 70: localization of a region involved in the interaction with core RNA polymerase. Biochemistry. 1989 Sep 19;28(19):7728–7734. doi: 10.1021/bi00445a031. [DOI] [PubMed] [Google Scholar]
  11. Lesley S. A., Thompson N. E., Burgess R. R. Studies of the role of the Escherichia coli heat shock regulatory protein sigma 32 by the use of monoclonal antibodies. J Biol Chem. 1987 Apr 15;262(11):5404–5407. [PubMed] [Google Scholar]
  12. Liu X., Matsumura P. An alternative sigma factor controls transcription of flagellar class-III operons in Escherichia coli: gene sequence, overproduction, purification and characterization. Gene. 1995 Oct 16;164(1):81–84. doi: 10.1016/0378-1119(95)00480-t. [DOI] [PubMed] [Google Scholar]
  13. Loewen P. C., Hengge-Aronis R. The role of the sigma factor sigma S (KatF) in bacterial global regulation. Annu Rev Microbiol. 1994;48:53–80. doi: 10.1146/annurev.mi.48.100194.000413. [DOI] [PubMed] [Google Scholar]
  14. Lonetto M., Gribskov M., Gross C. A. The sigma 70 family: sequence conservation and evolutionary relationships. J Bacteriol. 1992 Jun;174(12):3843–3849. doi: 10.1128/jb.174.12.3843-3849.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Malhotra A., Severinova E., Darst S. A. Crystal structure of a sigma 70 subunit fragment from E. coli RNA polymerase. Cell. 1996 Oct 4;87(1):127–136. doi: 10.1016/s0092-8674(00)81329-x. [DOI] [PubMed] [Google Scholar]
  16. Merrick M. J. In a class of its own--the RNA polymerase sigma factor sigma 54 (sigma N). Mol Microbiol. 1993 Dec;10(5):903–909. doi: 10.1111/j.1365-2958.1993.tb00961.x. [DOI] [PubMed] [Google Scholar]
  17. Mytelka D. S., Chamberlin M. J. Escherichia coli fliAZY operon. J Bacteriol. 1996 Jan;178(1):24–34. doi: 10.1128/jb.178.1.24-34.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nguyen L. H., Jensen D. B., Thompson N. E., Gentry D. R., Burgess R. R. In vitro functional characterization of overproduced Escherichia coli katF/rpoS gene product. Biochemistry. 1993 Oct 19;32(41):11112–11117. doi: 10.1021/bi00092a021. [DOI] [PubMed] [Google Scholar]
  19. Predich M., Doukhan L., Nair G., Smith I. Characterization of RNA polymerase and two sigma-factor genes from Mycobacterium smegmatis. Mol Microbiol. 1995 Jan;15(2):355–366. doi: 10.1111/j.1365-2958.1995.tb02249.x. [DOI] [PubMed] [Google Scholar]
  20. Rao L., Jones D. P., Nguyen L. H., McMahan S. A., Burgess R. R. Epitope mapping using histidine-tagged protein fragments: application to Escherichia coli RNA polymerase sigma 70. Anal Biochem. 1996 Oct 15;241(2):173–179. doi: 10.1006/abio.1996.0395. [DOI] [PubMed] [Google Scholar]
  21. Rao L., Karls R. K., Betley M. J. In vitro transcription of pathogenesis-related genes by purified RNA polymerase from Staphylococcus aureus. J Bacteriol. 1995 May;177(10):2609–2614. doi: 10.1128/jb.177.10.2609-2614.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Reisenauer A., Mohr C. D., Shapiro L. Regulation of a heat shock sigma32 homolog in Caulobacter crescentus. J Bacteriol. 1996 Apr;178(7):1919–1927. doi: 10.1128/jb.178.7.1919-1927.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  24. Severinov K., Fenyö D., Severinova E., Mustaev A., Chait B. T., Goldfarb A., Darst S. A. The sigma subunit conserved region 3 is part of "5'-face" of active center of Escherichia coli RNA polymerase. J Biol Chem. 1994 Aug 19;269(33):20826–20828. [PubMed] [Google Scholar]
  25. Steffen P., Goyard S., Ullmann A. Phosphorylated BvgA is sufficient for transcriptional activation of virulence-regulated genes in Bordetella pertussis. EMBO J. 1996 Jan 2;15(1):102–109. [PMC free article] [PubMed] [Google Scholar]
  26. Strickland M. S., Thompson N. E., Burgess R. R. Structure and function of the sigma-70 subunit of Escherichia coli RNA polymerase. Monoclonal antibodies: localization of epitopes by peptide mapping and effects on transcription. Biochemistry. 1988 Jul 26;27(15):5755–5762. doi: 10.1021/bi00415a054. [DOI] [PubMed] [Google Scholar]
  27. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  28. Yura T., Nagai H., Mori H. Regulation of the heat-shock response in bacteria. Annu Rev Microbiol. 1993;47:321–350. doi: 10.1146/annurev.mi.47.100193.001541. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES