Abstract
The archaeon Pyrococcus furiosus is a strictly anaerobic heterotroph that grows optimally at 100 degrees C by the fermentation of carbohydrates. It is known to contain high concentrations of novel intracellular solutes such as beta-mannosylglycerate and di-myo-inositol 1,1'-phosphate (DIP) (L. O. Martins and H. Santos, Appl. Environ. Microbiol. 61:3299-3303, 1995). Here, 31P nuclear magnetic resonance (NMR) spectroscopy was used to show that this organism also accumulates another type of phospho compound, as revealed by a major multiplet signal in the pyrophosphate region. The compounds were purified from cell extracts of P. furiosus by anion-exchange and gel filtration chromatographic procedures and were structurally analyzed by 1H, 13C, and 31P NMR spectroscopy. They were identified as two uridylated amino sugars, UDP N-acetylglucosamine and UDP N-acetylgalactosamine. Unambiguous characterizations and complete assignments of 1H and 13C resonances from such sugars have not been previously reported. In vitro 31P NMR spectroscopic analyses showed that, in contrast to DIP, which is maintained at a constant intracellular concentration (approximately 32 mM) throughout the growth phase of P. furiosus, the UDP amino sugars accumulated (to approximately 14 mM) only during the late log phase. The possible biochemical roles of these compounds in P. furiosus are discussed.
Full Text
The Full Text of this article is available as a PDF (166.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams M. W. Biochemical diversity among sulfur-dependent, hyperthermophilic microorganisms. FEMS Microbiol Rev. 1994 Oct;15(2-3):261–277. doi: 10.1111/j.1574-6976.1994.tb00139.x. [DOI] [PubMed] [Google Scholar]
- Adams M. W. Enzymes and proteins from organisms that grow near and above 100 degrees C. Annu Rev Microbiol. 1993;47:627–658. doi: 10.1146/annurev.mi.47.100193.003211. [DOI] [PubMed] [Google Scholar]
- Adams M. W., Kletzin A. Oxidoreductase-type enzymes and redox proteins involved in fermentative metabolisms of hyperthermophilic Archaea. Adv Protein Chem. 1996;48:101–180. doi: 10.1016/s0065-3233(08)60362-9. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Bryant F. O., Adams M. W. Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus. J Biol Chem. 1989 Mar 25;264(9):5070–5079. [PubMed] [Google Scholar]
- Ciulla R. A., Burggraf S., Stetter K. O., Roberts M. F. Occurrence and Role of Di-myo-Inositol-1,1'-Phosphate in Methanococcus igneus. Appl Environ Microbiol. 1994 Oct;60(10):3660–3664. doi: 10.1128/aem.60.10.3660-3664.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haltiwanger R. S., Kelly W. G., Roquemore E. P., Blomberg M. A., Dong L. Y., Kreppel L., Chou T. Y., Hart G. W. Glycosylation of nuclear and cytoplasmic proteins is ubiquitous and dynamic. Biochem Soc Trans. 1992 May;20(2):264–269. doi: 10.1042/bst0200264. [DOI] [PubMed] [Google Scholar]
- Ingram D. A., Davis G. R., Schwartz M. S., Swash M. The effect of continuous voluntary activation on neuromuscular transmission: a SFEMG study of myasthenia gravis and anterior horn cell disorders. Electroencephalogr Clin Neurophysiol. 1985 Mar;60(3):207–213. doi: 10.1016/0013-4694(85)90032-x. [DOI] [PubMed] [Google Scholar]
- Jannasch H. W., Wirsen C. O., Molyneaux S. J., Langworthy T. A. Comparative Physiological Studies on Hyperthermophilic Archaea Isolated from Deep-Sea Hot Vents with Emphasis on Pyrococcus Strain GB-D. Appl Environ Microbiol. 1992 Nov;58(11):3472–3481. doi: 10.1128/aem.58.11.3472-3481.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Juszczak A., Aono S., Adams M. W. The extremely thermophilic eubacterium, Thermotoga maritima, contains a novel iron-hydrogenase whose cellular activity is dependent upon tungsten. J Biol Chem. 1991 Jul 25;266(21):13834–13841. [PubMed] [Google Scholar]
- Kanodia S., Roberts M. F. Methanophosphagen: Unique cyclic pyrophosphate isolated from Methanobacterium thermoautotrophicum. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5217–5221. doi: 10.1073/pnas.80.17.5217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kärcher U., Schröder H., Haslinger E., Allmaier G., Schreiner R., Wieland F., Haselbeck A., König H. Primary structure of the heterosaccharide of the surface glycoprotein of Methanothermus fervidus. J Biol Chem. 1993 Dec 25;268(36):26821–26826. [PubMed] [Google Scholar]
- König H., Kandler O., Hammes W. Biosynthesis of pseudomurein: isolation of putative precursors from Methanobacterium thermoautotrophicum. Can J Microbiol. 1989 Jan;35(1):176–181. doi: 10.1139/m89-027. [DOI] [PubMed] [Google Scholar]
- Martins L. O., Santos H. Accumulation of Mannosylglycerate and Di-myo-Inositol-Phosphate by Pyrococcus furiosus in Response to Salinity and Temperature. Appl Environ Microbiol. 1995 Sep;61(9):3299–3303. doi: 10.1128/aem.61.9.3299-3303.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moon R. B., Richards J. H. Determination of intracellular pH by 31P magnetic resonance. J Biol Chem. 1973 Oct 25;248(20):7276–7278. [PubMed] [Google Scholar]
- Perlman M. E., Davis D. G., Gabel S. A., London R. E. Uridine diphospho sugars and related hexose phosphates in the liver of hexosamine-treated rats: identification using 31P-[1H] two-dimensional NMR with HOHAHA relay. Biochemistry. 1990 May 8;29(18):4318–4325. doi: 10.1021/bi00470a009. [DOI] [PubMed] [Google Scholar]
- Ramakrishnan V., Verhagen M., Adams M. Characterization of Di-myo-Inositol-1,1(prm1)-Phosphate in the Hyperthermophilic Bacterium Thermotoga maritima. Appl Environ Microbiol. 1997 Jan;63(1):347–350. doi: 10.1128/aem.63.1.347-350.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberton A. M., Wolfe R. S. Adenosine triphosphate pools in Methanobacterium. J Bacteriol. 1970 Apr;102(1):43–51. doi: 10.1128/jb.102.1.43-51.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schleper C., Holz I., Janekovic D., Murphy J., Zillig W. A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating. J Bacteriol. 1995 Aug;177(15):4417–4426. doi: 10.1128/jb.177.15.4417-4426.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scholz S., Sonnenbichler J., Schäfer W., Hensel R. Di-myo-inositol-1,1'-phosphate: a new inositol phosphate isolated from Pyrococcus woesei. FEBS Lett. 1992 Jul 20;306(2-3):239–242. doi: 10.1016/0014-5793(92)81008-a. [DOI] [PubMed] [Google Scholar]
- Seely R. J., Fahrney D. E. A novel diphospho-P,P'-diester from Methanobacterium thermoautotrophicum. J Biol Chem. 1983 Sep 25;258(18):10835–10838. [PubMed] [Google Scholar]
- Sonnewald U., Isern E., Gribbestad I. S., Unsgård G. UDP-N-acetylhexosamines and hypotaurine in human glioblastoma, normal brain tissue and cell cultures: 1H/NMR spectroscopy study. Anticancer Res. 1994 May-Jun;14(3A):793–798. [PubMed] [Google Scholar]
- Tolman C. J., Kanodia S., Roberts M. F., Daniels L. 31P-NMR spectra of methanogens: 2,3-cyclopyrophosphoglycerate is detectable only in methanobacteria strains. Biochim Biophys Acta. 1986 May 29;886(3):345–352. doi: 10.1016/0167-4889(86)90169-2. [DOI] [PubMed] [Google Scholar]
- White R. H. Biosynthesis of methanopterin. Biochemistry. 1990 Jun 5;29(22):5397–5404. doi: 10.1021/bi00474a027. [DOI] [PubMed] [Google Scholar]
- White R. H. Structures of the modified folates in the extremely thermophilic archaebacterium Thermococcus litoralis. J Bacteriol. 1993 Jun;175(11):3661–3663. doi: 10.1128/jb.175.11.3661-3663.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White R. H. Structures of the modified folates in the thermophilic archaebacteria Pyrococcus furiosus. Biochemistry. 1993 Jan 26;32(3):745–753. doi: 10.1021/bi00054a003. [DOI] [PubMed] [Google Scholar]
- Wice B. M., Trugnan G., Pinto M., Rousset M., Chevalier G., Dussaulx E., Lacroix B., Zweibaum A. The intracellular accumulation of UDP-N-acetylhexosamines is concomitant with the inability of human colon cancer cells to differentiate. J Biol Chem. 1985 Jan 10;260(1):139–146. [PubMed] [Google Scholar]
- Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]