Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Mar;179(5):1563–1572. doi: 10.1128/jb.179.5.1563-1572.1997

Genetic and physiologic analysis of a formyl-tetrahydrofolate synthetase mutant of Streptococcus mutans.

P J Crowley 1, J A Gutierrez 1, J D Hillman 1, A S Bleiweis 1
PMCID: PMC178867  PMID: 9045814

Abstract

Previously we reported that transposon Tn917 mutagenesis of Streptococcus mutans JH1005 yielded an isolate detective in its normal ability to produce a mutacin (P. J. Crowley, J. D. Hillman, and A. S. Bleiweis, abstr. D55, p. 258 in Abstracts of the 95th General Meeting of the American Society for Microbiology 1995, 1995). In this report we describe the recovery of the mutated gene by shotgun cloning. Sequence analysis of insert DNA adjacent to Tn917 revealed homology to the gene encoding formyl-tetrahydrofolate synthetase (Fhs) from both prokaryotic and eukaryotic sources. In many bacteria, Fhs catalyzes the formation of 10-formyl-tetrahydrofolate, which is used directly in purine biosynthesis and formylation of Met-tRNA and indirectly in the biosynthesis of methionine, serine, glycine, and thymine. Analysis of the fhs mutant grown anaerobically in a minimal medium demonstrated that the mutant had an absolute dependency only for adenine, although addition of methionine was necessary for normal growth. Coincidently it was discovered that the mutant was sensitive to acidic pH; it grew more slowly than the parent strain on complex medium at pH 5. Complementation of the mutant with an integration vector harboring a copy of fhs restored its ability to grow in minimal medium and at acidic pH as well as to produce mutacin. This represents the first characterization of Fhs in Streptococcus.

Full Text

The Full Text of this article is available as a PDF (588.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bender G. R., Sutton S. V., Marquis R. E. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect Immun. 1986 Aug;53(2):331–338. doi: 10.1128/iai.53.2.331-338.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carlsson J. Nutritional requirements of Streptococcus mutans. Caries Res. 1970;4(4):305–320. doi: 10.1159/000259653. [DOI] [PubMed] [Google Scholar]
  3. Cook R. J., Lloyd R. S., Wagner C. Isolation and characterization of cDNA clones for rat liver 10-formyltetrahydrofolate dehydrogenase. J Biol Chem. 1991 Mar 15;266(8):4965–4973. [PubMed] [Google Scholar]
  4. Cvitkovitch D. G., Boyd D. A., Thevenot T., Hamilton I. R. Glucose transport by a mutant of Streptococcus mutans unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system. J Bacteriol. 1995 May;177(9):2251–2258. doi: 10.1128/jb.177.9.2251-2258.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cvitkovitch D. G., Gutierrez J. A., Bleiweis A. S. Role of the citrate pathway in glutamate biosynthesis by Streptococcus mutans. J Bacteriol. 1997 Feb;179(3):650–655. doi: 10.1128/jb.179.3.650-655.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dickerman H. W., Steers E., Jr, Redfield B. G., Weissbach H. Methionyl soluble ribonucleic acid transformylase. I. Purification and partial characterization. J Biol Chem. 1967 Apr 10;242(7):1522–1525. [PubMed] [Google Scholar]
  7. Gutierrez J. A., Crowley P. J., Brown D. P., Hillman J. D., Youngman P., Bleiweis A. S. Insertional mutagenesis and recovery of interrupted genes of Streptococcus mutans by using transposon Tn917: preliminary characterization of mutants displaying acid sensitivity and nutritional requirements. J Bacteriol. 1996 Jul;178(14):4166–4175. doi: 10.1128/jb.178.14.4166-4175.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hamada S., Ooshima T. Production and properties of bacteriocins (mutacins) from Streptococcus mutans. Arch Oral Biol. 1975 Oct;20(10):641–648. doi: 10.1016/0003-9969(75)90131-4. [DOI] [PubMed] [Google Scholar]
  9. Hamilton I. R., Buckley N. D. Adaptation by Streptococcus mutans to acid tolerance. Oral Microbiol Immunol. 1991 Apr;6(2):65–71. doi: 10.1111/j.1399-302x.1991.tb00453.x. [DOI] [PubMed] [Google Scholar]
  10. Harper D. S., Loesche W. J. Effect of pH upon sucrose and glucose catabolism by the various genogroups of Streptococcus mutans. J Dent Res. 1983 May;62(5):526–531. doi: 10.1177/00220345830620050101. [DOI] [PubMed] [Google Scholar]
  11. Harper D. S., Loesche W. J. Growth and acid tolerance of human dental plaque bacteria. Arch Oral Biol. 1984;29(10):843–848. doi: 10.1016/0003-9969(84)90015-3. [DOI] [PubMed] [Google Scholar]
  12. Hillman J. D., Johnson K. P., Yaphe B. I. Isolation of a Streptococcus mutans strain producing a novel bacteriocin. Infect Immun. 1984 Apr;44(1):141–144. doi: 10.1128/iai.44.1.141-144.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hillman J. D. Lactate dehydrogenase mutants of Streptococcus mutans: isolation and preliminary characterization. Infect Immun. 1978 Jul;21(1):206–212. doi: 10.1128/iai.21.1.206-212.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Himes R. H., Harmony J. A. Formyltetrahydrofolate synthetase. CRC Crit Rev Biochem. 1973 Sep;1(4):501–535. doi: 10.3109/10409237309105441. [DOI] [PubMed] [Google Scholar]
  15. Hojo S., Huguchi M., Araya S. Glucan inhibition of diffusion in plaque. J Dent Res. 1976 Jan-Feb;55(1):169–169. doi: 10.1177/00220345760550011501. [DOI] [PubMed] [Google Scholar]
  16. Hum D. W., Bell A. W., Rozen R., MacKenzie R. E. Primary structure of a human trifunctional enzyme. Isolation of a cDNA encoding methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase. J Biol Chem. 1988 Nov 5;263(31):15946–15950. [PubMed] [Google Scholar]
  17. Kok J., van der Vossen J. M., Venema G. Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol. 1984 Oct;48(4):726–731. doi: 10.1128/aem.48.4.726-731.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kuramitsu H. K. Virulence factors of mutans streptococci: role of molecular genetics. Crit Rev Oral Biol Med. 1993;4(2):159–176. doi: 10.1177/10454411930040020201. [DOI] [PubMed] [Google Scholar]
  19. Lovell C. R., Przybyla A., Ljungdahl L. G. Primary structure of the thermostable formyltetrahydrofolate synthetase from Clostridium thermoaceticum. Biochemistry. 1990 Jun 19;29(24):5687–5694. doi: 10.1021/bi00476a007. [DOI] [PubMed] [Google Scholar]
  20. Lundberg L. G., Thoresson H. O., Karlström O. H., Nyman P. O. Nucleotide sequence of the structural gene for dUTPase of Escherichia coli K-12. EMBO J. 1983;2(6):967–971. doi: 10.1002/j.1460-2075.1983.tb01529.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MacKenzie R. E., Rabinowitz J. C. Cation-dependent reassociation of subunits of N10-formyltetrahydrofolate synthetase from Clostridium acidi-urici and Clostridium cylindrosporum. J Biol Chem. 1971 Jun 10;246(11):3731–3736. [PubMed] [Google Scholar]
  22. Nour J. M., Rabinowitz J. C. Isolation and sequencing of the cDNA coding for spinach 10-formyltetrahydrofolate synthetase. Comparisons with the yeast, mammalian, and bacterial proteins. J Biol Chem. 1992 Aug 15;267(23):16292–16296. [PubMed] [Google Scholar]
  23. Novák J., Caufield P. W., Miller E. J. Isolation and biochemical characterization of a novel lantibiotic mutacin from Streptococcus mutans. J Bacteriol. 1994 Jul;176(14):4316–4320. doi: 10.1128/jb.176.14.4316-4320.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Peekhaus N., Tolner B., Poolman B., Krämer R. The glutamate uptake regulatory protein (Grp) of Zymomonas mobilis and its relation to the global regulator Lrp of Escherichia coli. J Bacteriol. 1995 Sep;177(17):5140–5147. doi: 10.1128/jb.177.17.5140-5147.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Perry D., Kuramitsu H. K. Genetic transformation of Streptococcus mutans. Infect Immun. 1981 Jun;32(3):1295–1297. doi: 10.1128/iai.32.3.1295-1297.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. RABINOWITZ J. C., PRICER W. E., Jr Formyltetrahydrofolate synthetase. I. Isolation and crystallization of the enzyme. J Biol Chem. 1962 Sep;237:2898–2902. [PubMed] [Google Scholar]
  27. Rankin C. A., Haslam G. C., Himes R. H. Sequence and expression of the gene for N10-formyltetrahydrofolate synthetase from Clostridium cylindrosporum. Protein Sci. 1993 Feb;2(2):197–205. doi: 10.1002/pro.5560020208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rogers A. H. Bacteriocinogeny and the properties of some bacteriocins of Streptococcus mutans. Arch Oral Biol. 1976;21(2):99–104. doi: 10.1016/0003-9969(76)90079-0. [DOI] [PubMed] [Google Scholar]
  29. Russell R. R. The application of molecular genetics to the microbiology of dental caries. Caries Res. 1994;28(2):69–82. doi: 10.1159/000261625. [DOI] [PubMed] [Google Scholar]
  30. Song J. M., Rabinowitz J. C. Function of yeast cytoplasmic C1-tetrahydrofolate synthase. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2636–2640. doi: 10.1073/pnas.90.7.2636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  32. Spitzer E. D., Jimenez-Billini H. E., Weiss B. beta-Alanine auxotrophy associated with dfp, a locus affecting DNA synthesis in Escherichia coli. J Bacteriol. 1988 Feb;170(2):872–876. doi: 10.1128/jb.170.2.872-876.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Spitzer E. D., Weiss B. dfp Gene of Escherichia coli K-12, a locus affecting DNA synthesis, codes for a flavoprotein. J Bacteriol. 1985 Dec;164(3):994–1003. doi: 10.1128/jb.164.3.994-1003.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Staben C., Rabinowitz J. C. Nucleotide sequence of the Saccharomyces cerevisiae ADE3 gene encoding C1-tetrahydrofolate synthase. J Biol Chem. 1986 Apr 5;261(10):4629–4637. [PubMed] [Google Scholar]
  35. Stover P., Schirch V. The metabolic role of leucovorin. Trends Biochem Sci. 1993 Mar;18(3):102–106. doi: 10.1016/0968-0004(93)90162-g. [DOI] [PubMed] [Google Scholar]
  36. Tatevossian A. Diffusion of radiotracers in human dental plaque. Caries Res. 1979;13(3):154–162. doi: 10.1159/000260396. [DOI] [PubMed] [Google Scholar]
  37. Terleckyj B., Shockman G. D. Amino acid requirements of Streptococcus mutans and other oral streptococci. Infect Immun. 1975 Apr;11(4):656–664. doi: 10.1128/iai.11.4.656-664.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Thigpen A. E., West M. G., Appling D. R. Rat C1-tetrahydrofolate synthase. cDNA isolation, tissue-specific levels of the mRNA, and expression of the protein in yeast. J Biol Chem. 1990 May 15;265(14):7907–7913. [PubMed] [Google Scholar]
  39. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Vadeboncoeur C., Thibault L., Neron S., Halvorson H., Hamilton I. R. Effect of growth conditions on levels of components of the phosphoenolpyruvate:sugar phosphotransferase system in Streptococcus mutans and Streptococcus sobrinus grown in continuous culture. J Bacteriol. 1987 Dec;169(12):5686–5691. doi: 10.1128/jb.169.12.5686-5691.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. WHITELEY H. R., OSBORN M. J., HUENNEKENS F. M. Purification and properties of the formate-activating enzyme from Micrococcus aerogenes. J Biol Chem. 1959 Jun;234(6):1538–1543. [PubMed] [Google Scholar]
  42. Welch W. H., Irwin C. L., Himes R. H. Observations on the monovalent cation requirements of formyltetrahydrofolate synthetase. Biochem Biophys Res Commun. 1968 Feb 15;30(3):255–261. doi: 10.1016/0006-291x(68)90443-9. [DOI] [PubMed] [Google Scholar]
  43. Whitehead T. R., Park M., Rabinowitz J. C. Distribution of 10-formyltetrahydrofolate synthetase in eubacteria. J Bacteriol. 1988 Feb;170(2):995–997. doi: 10.1128/jb.170.2.995-997.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Whitehead T. R., Rabinowitz J. C. Nucleotide sequence of the Clostridium acidiurici ("Clostridium acidi-urici") gene for 10-formyltetrahydrofolate synthetase shows extensive amino acid homology with the trifunctional enzyme C1-tetrahydrofolate synthase from Saccharomyces cerevisiae. J Bacteriol. 1988 Jul;170(7):3255–3261. doi: 10.1128/jb.170.7.3255-3261.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES