Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Mar;179(5):1580–1583. doi: 10.1128/jb.179.5.1580-1583.1997

Pesticin displays muramidase activity.

W Vollmer 1, H Pilsl 1, K Hantke 1, J V Höltje 1, V Braun 1
PMCID: PMC178869  PMID: 9045816

Abstract

Pesticin of Yersinia pestis is the only bacteriocin that converts sensitive cells to stable spheroplasts. The amino acid sequence of pesticin as derived from the nucleotide sequence shows no similarity to those of any of the bacteriocins. The unique properties of pesticin prompted an investigation of its mode of action. Since the pesticin plasmid does not encode a lysis protein for release of pesticin into the culture medium, pesticin was isolated from cells and purified to electrophoretic homogeneity. Highly purified pesticin degraded murein and murein glycan strands lacking the peptide side chains to products that were similar to those obtained by lysozyme, as revealed by high-resolution high-pressure liquid chromatography. After reduction of the murein degradation products with tritium-labeled sodium borohydride, acid hydrolysis, and separation of the products by thin-layer chromatography, radiolabeled muraminitol was identified. This indicates that pesticin is a muramidase, and not an N-acetyl-glucosaminidase, that converts cells into stable spheroplasts by slowly degrading murein.

Full Text

The Full Text of this article is available as a PDF (105.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beachey E. H., Keck W., de Pedro M. A., Schwarz U. Exoenzymatic activity of transglycosylase isolated from Escherichia coli. Eur J Biochem. 1981 May 15;116(2):355–358. doi: 10.1111/j.1432-1033.1981.tb05342.x. [DOI] [PubMed] [Google Scholar]
  2. Braun V., Pilsl H., Gross P. Colicins: structures, modes of action, transfer through membranes, and evolution. Arch Microbiol. 1994;161(3):199–206. doi: 10.1007/BF00248693. [DOI] [PubMed] [Google Scholar]
  3. Braun V., Schaller K., Wabl M. R. Isolation, characterization, and action of colicin M. Antimicrob Agents Chemother. 1974 May;5(5):520–533. doi: 10.1128/aac.5.5.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ferber D. M., Brubaker R. R. Mode of action of pesticin: N-acetylglucosaminidase activity. J Bacteriol. 1979 Aug;139(2):495–501. doi: 10.1128/jb.139.2.495-501.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ferber D. M., Fowler J. M., Brubaker R. R. Mutations to tolerance and resistance to pesticin and colicins in Escherichia coli phi. J Bacteriol. 1981 May;146(2):506–511. doi: 10.1128/jb.146.2.506-511.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Glauner B., Höltje J. V., Schwarz U. The composition of the murein of Escherichia coli. J Biol Chem. 1988 Jul 25;263(21):10088–10095. [PubMed] [Google Scholar]
  7. Glauner B. Separation and quantification of muropeptides with high-performance liquid chromatography. Anal Biochem. 1988 Aug 1;172(2):451–464. doi: 10.1016/0003-2697(88)90468-x. [DOI] [PubMed] [Google Scholar]
  8. Gross P., Braun V. Colicin M is inactivated during import by its immunity protein. Mol Gen Genet. 1996 Jun 12;251(3):388–396. doi: 10.1007/BF02172531. [DOI] [PubMed] [Google Scholar]
  9. Hall P. J., Brubaker R. R. Pesticin-dependent generation of somotically stable spheroplast-like structures. J Bacteriol. 1978 Nov;136(2):786–789. doi: 10.1128/jb.136.2.786-789.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harkness R. E., Braun V. Colicin M inhibits peptidoglycan biosynthesis by interfering with lipid carrier recycling. J Biol Chem. 1989 Apr 15;264(11):6177–6182. [PubMed] [Google Scholar]
  11. Harkness R. E., Braun V. Inhibition of lipopolysaccharide O-antigen synthesis by colicin M. J Biol Chem. 1989 Sep 5;264(25):14716–14722. [PubMed] [Google Scholar]
  12. Harz H., Burgdorf K., Höltje J. V. Isolation and separation of the glycan strands from murein of Escherichia coli by reversed-phase high-performance liquid chromatography. Anal Biochem. 1990 Oct;190(1):120–128. doi: 10.1016/0003-2697(90)90144-x. [DOI] [PubMed] [Google Scholar]
  13. Hu P. C., Brubaker R. R. Characterization of pesticin. Separation of antibacterial activities. J Biol Chem. 1974 Aug 10;249(15):4749–4753. [PubMed] [Google Scholar]
  14. Höltje J. V. From growth to autolysis: the murein hydrolases in Escherichia coli. Arch Microbiol. 1995 Oct;164(4):243–254. doi: 10.1007/BF02529958. [DOI] [PubMed] [Google Scholar]
  15. James R., Kleanthous C., Moore G. R. The biology of E colicins: paradigms and paradoxes. Microbiology. 1996 Jul;142(Pt 7):1569–1580. doi: 10.1099/13500872-142-7-1569. [DOI] [PubMed] [Google Scholar]
  16. Killmann H., Braun V. An aspartate deletion mutation defines a binding site of the multifunctional FhuA outer membrane receptor of Escherichia coli K-12. J Bacteriol. 1992 Jun;174(11):3479–3486. doi: 10.1128/jb.174.11.3479-3486.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kusser W., Schwarz U. Escherichia coli murein transglycosylase. Purification by affinity chromatography and interaction with polynucleotides. Eur J Biochem. 1980 Jan;103(2):277–281. doi: 10.1111/j.1432-1033.1980.tb04312.x. [DOI] [PubMed] [Google Scholar]
  18. Pilsl H., Braun V. Evidence that the immunity protein inactivates colicin 5 immediately prior to the formation of the transmembrane channel. J Bacteriol. 1995 Dec;177(23):6966–6972. doi: 10.1128/jb.177.23.6966-6972.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pilsl H., Braun V. Novel colicin 10: assignment of four domains to TonB- and TolC-dependent uptake via the Tsx receptor and to pore formation. Mol Microbiol. 1995 Apr;16(1):57–67. doi: 10.1111/j.1365-2958.1995.tb02391.x. [DOI] [PubMed] [Google Scholar]
  20. Pilsl H., Braun V. Strong function-related homology between the pore-forming colicins K and 5. J Bacteriol. 1995 Dec;177(23):6973–6977. doi: 10.1128/jb.177.23.6973-6977.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pilsl H., Killmann H., Hantke K., Braun V. Periplasmic location of the pesticin immunity protein suggests inactivation of pesticin in the periplasm. J Bacteriol. 1996 Apr;178(8):2431–2435. doi: 10.1128/jb.178.8.2431-2435.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pugsley A. P. The ins and outs of colicins. Part II. Lethal action, immunity and ecological implications. Microbiol Sci. 1984 Nov;1(8):203–205. [PubMed] [Google Scholar]
  23. Rakin A., Saken E., Harmsen D., Heesemann J. The pesticin receptor of Yersinia enterocolitica: a novel virulence factor with dual function. Mol Microbiol. 1994 Jul;13(2):253–263. doi: 10.1111/j.1365-2958.1994.tb00420.x. [DOI] [PubMed] [Google Scholar]
  24. Romeis T., Vollmer W., Höltje J. V. Characterization of three different lytic transglycosylases in Escherichia coli. FEMS Microbiol Lett. 1993 Aug 1;111(2-3):141–146. doi: 10.1111/j.1574-6968.1993.tb06376.x. [DOI] [PubMed] [Google Scholar]
  25. Roos U., Harkness R. E., Braun V. Assembly of colicin genes from a few DNA fragments. Nucleotide sequence of colicin D. Mol Microbiol. 1989 Jul;3(7):891–902. doi: 10.1111/j.1365-2958.1989.tb00238.x. [DOI] [PubMed] [Google Scholar]
  26. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES