Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Mar;179(5):1591–1597. doi: 10.1128/jb.179.5.1591-1597.1997

The light organ symbiont Vibrio fischeri possesses two distinct secreted ADP-ribosyltransferases.

K A Reich 1, T Biegel 1, G K Schoolnik 1
PMCID: PMC178871  PMID: 9045818

Abstract

We have previously described the purification, cloning, and initial characterization of a secreted ADP-ribosyltransferase, halovibrin (gene designation hvn), from the luminescent light organ symbiont Vibrio fischeri. This report describes a strategy for overexpression of halovibrin, the production and refinement of antihalo-vibrin antisera, and the molecular biological construction of a V. fischeri halovibrin null strain. Biochemical analysis of this mutant revealed that V. fischeri hvn null still possessed ADP-ribosyltransferase activity and that this activity is immunologically, genetically, and structurally distinct from the previously described enzyme. This unusual finding, of two ADP-ribosyltransferase enzymes produced by a microorganism, is complemented by the details of the purification to apparent homogeneity and in vitro regulation of this new protein, halovibrin-beta.

Full Text

The Full Text of this article is available as a PDF (713.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhown A. S., Bennett J. C. High-sensitivity sequence analysis of proteins recovered from sodium dodecyl sulfate gels. Methods Enzymol. 1983;91:450–455. doi: 10.1016/s0076-6879(83)91042-x. [DOI] [PubMed] [Google Scholar]
  2. Boettcher K. J., Ruby E. G. Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes. J Bacteriol. 1990 Jul;172(7):3701–3706. doi: 10.1128/jb.172.7.3701-3706.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coates M. E. Gnotobiotic animals in research: their uses and limitations. Lab Anim. 1975 Oct;9(4):275–282. doi: 10.1258/002367775780957296. [DOI] [PubMed] [Google Scholar]
  4. Giulian G. G., Moss R. L., Greaser M. Improved methodology for analysis and quantitation of proteins on one-dimensional silver-stained slab gels. Anal Biochem. 1983 Mar;129(2):277–287. doi: 10.1016/0003-2697(83)90551-1. [DOI] [PubMed] [Google Scholar]
  5. Graf J., Dunlap P. V., Ruby E. G. Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J Bacteriol. 1994 Nov;176(22):6986–6991. doi: 10.1128/jb.176.22.6986-6991.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kaniga K., Delor I., Cornelis G. R. A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene. 1991 Dec 20;109(1):137–141. doi: 10.1016/0378-1119(91)90599-7. [DOI] [PubMed] [Google Scholar]
  7. Krueger K. M., Barbieri J. T. The family of bacterial ADP-ribosylating exotoxins. Clin Microbiol Rev. 1995 Jan;8(1):34–47. doi: 10.1128/cmr.8.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Lee K. H., Ruby E. G. Detection of the Light Organ Symbiont, Vibrio fischeri, in Hawaiian Seawater by Using lux Gene Probes. Appl Environ Microbiol. 1992 Mar;58(3):942–947. doi: 10.1128/aem.58.3.942-947.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lee K., Ruby E. G. Symbiotic Role of the Viable but Nonculturable State of Vibrio fischeri in Hawaiian Coastal Seawater. Appl Environ Microbiol. 1995 Jan;61(1):278–283. doi: 10.1128/aem.61.1.278-283.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McFall-Ngai M. J., Ruby E. G. Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science. 1991 Dec 6;254(5037):1491–1494. doi: 10.1126/science.1962208. [DOI] [PubMed] [Google Scholar]
  12. Mekalanos J. J. Production and purification of cholera toxin. Methods Enzymol. 1988;165:169–175. doi: 10.1016/s0076-6879(88)65027-0. [DOI] [PubMed] [Google Scholar]
  13. Montgomery M. K., McFall-Ngai M. Bacterial symbionts induce host organ morphogenesis during early postembryonic development of the squid Euprymna scolopes. Development. 1994 Jul;120(7):1719–1729. doi: 10.1242/dev.120.7.1719. [DOI] [PubMed] [Google Scholar]
  14. Reich K. A., Schoolnik G. K. Halovibrin, secreted from the light organ symbiont Vibrio fischeri, is a member of a new class of ADP-ribosyltransferases. J Bacteriol. 1996 Jan;178(1):209–215. doi: 10.1128/jb.178.1.209-215.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ruby E. G., Asato L. M. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch Microbiol. 1993;159(2):160–167. doi: 10.1007/BF00250277. [DOI] [PubMed] [Google Scholar]
  16. Ruby E. G., McFall-Ngai M. J. A squid that glows in the night: development of an animal-bacterial mutualism. J Bacteriol. 1992 Aug;174(15):4865–4870. doi: 10.1128/jb.174.15.4865-4870.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Simon R., O'Connell M., Labes M., Pühler A. Plasmid vectors for the genetic analysis and manipulation of rhizobia and other gram-negative bacteria. Methods Enzymol. 1986;118:640–659. doi: 10.1016/0076-6879(86)18106-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES