Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Mar;179(5):1609–1613. doi: 10.1128/jb.179.5.1609-1613.1997

Biochemical relationships between the 53-kilodalton (Exo53) and 49-kilodalton (ExoS) forms of exoenzyme S of Pseudomonas aeruginosa.

S Liu 1, T L Yahr 1, D W Frank 1, J T Barbieri 1
PMCID: PMC178873  PMID: 9045820

Abstract

Genetic studies have shown that the 53-kDa (Exo53) and 49-kDa (ExoS) forms of exoenzyme S of Pseudomonas aeruginosa are encoded by separate genes, termed exoT and exoS, respectively. Although ExoS and Exo53 possess 76% primary amino acid homology, Exo53 has been shown to express ADP-ribosyltransferase activity at about 0.2% of the specific activity of ExoS. The mechanism for the lower ADP-ribosyltransferase activity of Exo53 relative to ExoS was analyzed by using a recombinant deletion protein which contained the catalytic domain of Exo53, comprising its 223 carboxyl-terminal residues (termed N223-53). N223-53 was expressed in Escherichia coli as a stable, soluble fusion protein which was purified to >80% homogeneity. Under linear velocity conditions, N223-53 catalyzed the FAS (for factor activating exoenzyme S)-dependent ADP-ribosylation of soybean trypsin inhibitor (SBTI) at 0.4% and of the Ras protein at 1.0% of the rates of catalysis by N222-49. N222-49 is a protein comprising the 222 carboxyl-terminal residues of ExoS, which represent its catalytic domain. N223-53 possessed binding affinities for NAD and SBTI similar to those of N222-49 (less than fivefold differences in Kms) but showed a lower velocity rate for the ADP-ribosylation of SBTI. This indicated that the primary defect for ADP-ribosylation by Exo53 resided within its catalytic capacity. Analysis of hybrid proteins, composed of reciprocal halves of N223-53 and N222-49, localized the catalytic defect to residues between positions 235 and 349 of N223-53. E385 was also identified as a potential active site residue of Exo53.

Full Text

The Full Text of this article is available as a PDF (168.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carroll S. F., Collier R. J. NAD binding site of diphtheria toxin: identification of a residue within the nicotinamide subsite by photochemical modification with NAD. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3307–3311. doi: 10.1073/pnas.81.11.3307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Choe S., Bennett M. J., Fujii G., Curmi P. M., Kantardjieff K. A., Collier R. J., Eisenberg D. The crystal structure of diphtheria toxin. Nature. 1992 May 21;357(6375):216–222. doi: 10.1038/357216a0. [DOI] [PubMed] [Google Scholar]
  3. Coburn J., Kane A. V., Feig L., Gill D. M. Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity. J Biol Chem. 1991 Apr 5;266(10):6438–6446. [PubMed] [Google Scholar]
  4. Coburn J., Wyatt R. T., Iglewski B. H., Gill D. M. Several GTP-binding proteins, including p21c-H-ras, are preferred substrates of Pseudomonas aeruginosa exoenzyme S. J Biol Chem. 1989 May 25;264(15):9004–9008. [PubMed] [Google Scholar]
  5. Cortina G., Barbieri J. T. Role of tryptophan 26 in the NAD glycohydrolase reaction of the S-1 subunit of pertussis toxin. J Biol Chem. 1989 Oct 15;264(29):17322–17328. [PubMed] [Google Scholar]
  6. Domenighini M., Rappuoli R. Three conserved consensus sequences identify the NAD-binding site of ADP-ribosylating enzymes, expressed by eukaryotes, bacteria and T-even bacteriophages. Mol Microbiol. 1996 Aug;21(4):667–674. doi: 10.1046/j.1365-2958.1996.321396.x. [DOI] [PubMed] [Google Scholar]
  7. Douglas C. M., Collier R. J. Pseudomonas aeruginosa exotoxin A: alterations of biological and biochemical properties resulting from mutation of glutamic acid 553 to aspartic acid. Biochemistry. 1990 May 29;29(21):5043–5049. doi: 10.1021/bi00473a007. [DOI] [PubMed] [Google Scholar]
  8. Fu H., Coburn J., Collier R. J. The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2320–2324. doi: 10.1073/pnas.90.6.2320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Iglewski B. H., Sadoff J., Bjorn M. J., Maxwell E. S. Pseudomonas aeruginosa exoenzyme S: an adenosine diphosphate ribosyltransferase distinct from toxin A. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3211–3215. doi: 10.1073/pnas.75.7.3211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jung M., Just I., van Damme J., Vandekerckhove J., Aktories K. NAD-binding site of the C3-like ADP-ribosyltransferase from Clostridium limosum. J Biol Chem. 1993 Nov 5;268(31):23215–23218. [PubMed] [Google Scholar]
  11. Kahn R. A., Gilman A. G. The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. J Biol Chem. 1986 Jun 15;261(17):7906–7911. [PubMed] [Google Scholar]
  12. Knight D. A., Finck-Barbançon V., Kulich S. M., Barbieri J. T. Functional domains of Pseudomonas aeruginosa exoenzyme S. Infect Immun. 1995 Aug;63(8):3182–3186. doi: 10.1128/iai.63.8.3182-3186.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krueger K. M., Barbieri J. T. The family of bacterial ADP-ribosylating exotoxins. Clin Microbiol Rev. 1995 Jan;8(1):34–47. doi: 10.1128/cmr.8.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kulich S. M., Frank D. W., Barbieri J. T. Expression of recombinant exoenzyme S of Pseudomonas aeruginosa. Infect Immun. 1995 Jan;63(1):1–8. doi: 10.1128/iai.63.1.1-8.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kulich S. M., Frank D. W., Barbieri J. T. Purification and characterization of exoenzyme S from Pseudomonas aeruginosa 388. Infect Immun. 1993 Jan;61(1):307–313. doi: 10.1128/iai.61.1.307-313.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kulich S. M., Yahr T. L., Mende-Mueller L. M., Barbieri J. T., Frank D. W. Cloning the structural gene for the 49-kDa form of exoenzyme S (exoS) from Pseudomonas aeruginosa strain 388. J Biol Chem. 1994 Apr 8;269(14):10431–10437. [PubMed] [Google Scholar]
  17. Liu S., Kulich S. M., Barbieri J. T. Identification of glutamic acid 381 as a candidate active site residue of Pseudomonas aeruginosa exoenzyme S. Biochemistry. 1996 Feb 27;35(8):2754–2758. doi: 10.1021/bi952340g. [DOI] [PubMed] [Google Scholar]
  18. Lobet Y., Cluff C. W., Cieplak W., Jr Effect of site-directed mutagenic alterations on ADP-ribosyltransferase activity of the A subunit of Escherichia coli heat-labile enterotoxin. Infect Immun. 1991 Sep;59(9):2870–2879. doi: 10.1128/iai.59.9.2870-2879.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nicas T. I., Iglewski B. H. Isolation and characterization of transposon-induced mutants of Pseudomonas aeruginosa deficient in production of exoenzyme S. Infect Immun. 1984 Aug;45(2):470–474. doi: 10.1128/iai.45.2.470-474.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Noda M., Tsai S. C., Adamik R., Moss J., Vaughan M. Mechanism of cholera toxin activation by a guanine nucleotide-dependent 19 kDa protein. Biochim Biophys Acta. 1990 May 16;1034(2):195–199. doi: 10.1016/0304-4165(90)90076-9. [DOI] [PubMed] [Google Scholar]
  21. Sixma T. K., Pronk S. E., Kalk K. H., Wartna E. S., van Zanten B. A., Witholt B., Hol W. G. Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature. 1991 May 30;351(6325):371–377. doi: 10.1038/351371a0. [DOI] [PubMed] [Google Scholar]
  22. Yahr T. L., Barbieri J. T., Frank D. W. Genetic relationship between the 53- and 49-kilodalton forms of exoenzyme S from Pseudomonas aeruginosa. J Bacteriol. 1996 Mar;178(5):1412–1419. doi: 10.1128/jb.178.5.1412-1419.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES