Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Mar;179(6):1846–1851. doi: 10.1128/jb.179.6.1846-1851.1997

Isolation and characterization of a molecular chaperone, gp57A, of bacteriophage T4.

T Matsui 1, B Griniuviené 1, E Goldberg 1, A Tsugita 1, N Tanaka 1, F Arisaka 1
PMCID: PMC178905  PMID: 9068627

Abstract

A molecular chaperone of bacteriophage T4, gp57A, which facilitates the formation of the long and short tail fibers, was isolated and characterized by peptide analysis, sedimentation equilibrium, and circular dichroism (CD). Sequence analysis confirmed the predicted sequence of 79 amino acids from the nucleotide sequence of the gene with the N-terminal methionine removed. The result led to the conclusion that the apparent smaller molecular weight of 6,000 from Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis than the expected molecular weight of 8,710 was due to its abnormal electrophoretic behavior instead of cleavage or processing of the gene product. Estimation of the secondary structure from far-UV CD indicated a 94% alpha-helix content, which was in accord with the prediction from the primary structure. A sedimentation equilibrium study, on the other hand, revealed that gp57A assumes a tetrameric subunit structure.

Full Text

The Full Text of this article is available as a PDF (144.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Broida J., Abelson J. Sequence organization and control of transcription in the bacteriophage T4 tRNA region. J Mol Biol. 1985 Oct 5;185(3):545–563. doi: 10.1016/0022-2836(85)90071-3. [DOI] [PubMed] [Google Scholar]
  2. Dickson R. C. Assembly of bacteriophage T4 tail fibers. IV. Subunit composition of tail fibers and fiber precursors. J Mol Biol. 1973 Oct 5;79(4):633–647. doi: 10.1016/0022-2836(73)90068-5. [DOI] [PubMed] [Google Scholar]
  3. Georgopoulos C. P., Hendrix R. W., Kaiser A. D., Wood W. B. Role of the host cell in bacteriophage morphogenesis: effects of a bacterial mutation on T4 head assembly. Nat New Biol. 1972 Sep 13;239(89):38–41. doi: 10.1038/newbio239038a0. [DOI] [PubMed] [Google Scholar]
  4. Hendrick J. P., Hartl F. U. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem. 1993;62:349–384. doi: 10.1146/annurev.bi.62.070193.002025. [DOI] [PubMed] [Google Scholar]
  5. Herrmann R. Nucleotide sequence of the bacteriophage T4 gene 57 and a deduced amino acid sequence. Nucleic Acids Res. 1982 Feb 11;10(3):1105–1112. doi: 10.1093/nar/10.3.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Herrmann R., Wood W. B. Assembly of bacteriophage T4 tail fibers: identification and characterization of the nonstructural protein gp57. Mol Gen Genet. 1981;184(1):125–132. doi: 10.1007/BF00271208. [DOI] [PubMed] [Google Scholar]
  7. Huang J. M., Matthews H. R. Application of sodium dodecyl sulfate-gel electrophoresis to low molecular weight polypeptides. Anal Biochem. 1990 Jul;188(1):114–117. doi: 10.1016/0003-2697(90)90537-j. [DOI] [PubMed] [Google Scholar]
  8. Kells S. S., Haselkorn R. Bacteriophage T4 short tail fibers are the product of gene 12. J Mol Biol. 1974 Mar 15;83(4):473–485. doi: 10.1016/0022-2836(74)90508-7. [DOI] [PubMed] [Google Scholar]
  9. Laemmli U. K., Beguin F., Gujer-Kellenberger G. A factor preventing the major head protein of bacteriophage T4 from random aggregation. J Mol Biol. 1970 Jan 14;47(1):69–85. doi: 10.1016/0022-2836(70)90402-x. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K., Mölbert E., Showe M., Kellenberger E. Form-determining function of the genes required for the assembly of the head of bacteriophage T4. J Mol Biol. 1970 Apr 14;49(1):99–113. doi: 10.1016/0022-2836(70)90379-7. [DOI] [PubMed] [Google Scholar]
  12. Makhov A. M., Trus B. L., Conway J. F., Simon M. N., Zurabishvili T. G., Mesyanzhinov V. V., Steven A. C. The short tail-fiber of bacteriophage T4: molecular structure and a mechanism for its conformational transition. Virology. 1993 May;194(1):117–127. doi: 10.1006/viro.1993.1241. [DOI] [PubMed] [Google Scholar]
  13. Mason W. S., Haselkorn R. Product of T4 gene 12. J Mol Biol. 1972 May 28;66(3):445–469. doi: 10.1016/0022-2836(72)90426-3. [DOI] [PubMed] [Google Scholar]
  14. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  15. Nishikawa K., Noguchi T. Predicting protein secondary structure based on amino acid sequence. Methods Enzymol. 1991;202:31–44. doi: 10.1016/0076-6879(91)02005-t. [DOI] [PubMed] [Google Scholar]
  16. Provencher S. W., Glöckner J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry. 1981 Jan 6;20(1):33–37. doi: 10.1021/bi00504a006. [DOI] [PubMed] [Google Scholar]
  17. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  18. Simon L. D., Anderson T. F. The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. I. Attachment and penetration. Virology. 1967 Jun;32(2):279–297. doi: 10.1016/0042-6822(67)90277-2. [DOI] [PubMed] [Google Scholar]
  19. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  20. Snustad D. P. Dominance interactions in Escherichia coli cells mixedly infected with bacteriophage T4D wild-type and amber mutants and their possible implications as to type of gene-product function: catalytic vs. stoichiometric. Virology. 1968 Aug;35(4):550–563. doi: 10.1016/0042-6822(68)90285-7. [DOI] [PubMed] [Google Scholar]
  21. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  22. Ward S., Dickson R. C. Assembly of bacteriophage T4 tail fibers. 3. Genetic control of the major tail fiber polypeptides. J Mol Biol. 1971 Dec 28;62(3):479–492. doi: 10.1016/0022-2836(71)90149-5. [DOI] [PubMed] [Google Scholar]
  23. Wood W. B., Conley M. P., Lyle H. L., Dickson R. C. Attachment of tail fibers in bacteriophage T4 assembly. Purification, properties, and site of action of the accessory protein coded by gene 63. J Biol Chem. 1978 Apr 10;253(7):2437–2445. [PubMed] [Google Scholar]
  24. van der Vies S. M., Gatenby A. A., Georgopoulos C. Bacteriophage T4 encodes a co-chaperonin that can substitute for Escherichia coli GroES in protein folding. Nature. 1994 Apr 14;368(6472):654–656. doi: 10.1038/368654a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES