Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Mar;179(6):1880–1886. doi: 10.1128/jb.179.6.1880-1886.1997

Extracellular melibiose and fructose are intermediates in raffinose catabolism during fermentation to ethanol by engineered enteric bacteria.

M Moniruzzaman 1, X Lai 1, S W York 1, L O Ingram 1
PMCID: PMC178910  PMID: 9068632

Abstract

Contrary to general concepts of bacterial saccharide metabolism, melibiose (25 to 32 g/liter) and fructose (5 to 14 g/liter) accumulated as extracellular intermediates during the catabolism of raffinose (O-alpha-D-galactopyranosyl-1, 6-alpha-D-glucopyranosyl-beta-D-fructofuranoside) (90 g/liter) by ethanologenic recombinants of Escherichia coli B, Klebsiella oxytoca M5A1, and Erwinia chrysanthemi EC16. Both hydrolysis products (melibiose and fructose) were subsequently transported and further metabolized by all three organisms. Raffinose catabolism was initiated by beta-fructosidase; melibiose was subsequently hydrolyzed to galactose and glucose by alpha-galactosidase. Glucose and fructose were completely metabolized by all three organisms, but galactose accumulated in the fermentation broth with EC16(pLOI555) and P2. MM2 (a raffinose-positive E. coli mutant) was the most effective biocatalyst for ethanol production (38 g/liter) from raffinose. All organisms rapidly fermented sucrose (90 g/liter) to ethanol (48 g/liter) at more than 90% of the theoretical yield. During sucrose catabolism, both hydrolysis products (glucose and fructose) were metabolized concurrently by EC16(pLOI555) and P2 without sugar leakage. However, fructose accumulated extracellularly (27 to 28 g/liter) at early stages of fermentation with KO11 and MM2. Sequential utilization of glucose and fructose correlated with a diauxie in base utilization (pH maintenance). The mechanism of sugar escape remains unknown but may involve downhill leakage via permease which transports precursor saccharides or novel sugar export proteins. If sugar escape occurs in nature with wild organisms, it could facilitate the development of complex bacterial communities which are based on the sequence of saccharide catabolism and the hierarchy of sugar utilization.

Full Text

The Full Text of this article is available as a PDF (153.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aslanidis C., Schmid K., Schmitt R. Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilization of raffinose in Escherichia coli. J Bacteriol. 1989 Dec;171(12):6753–6763. doi: 10.1128/jb.171.12.6753-6763.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aslanidis C., Schmitt R. Regulatory elements of the raffinose operon: nucleotide sequences of operator and repressor genes. J Bacteriol. 1990 Apr;172(4):2178–2180. doi: 10.1128/jb.172.4.2178-2180.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burkardt H. J., Mattes R., Schmid K., Schmitt R. Properties of two conjugative plasmids mediating tetracycline resistance, raffinose catabolism and hydrogen sulfide production in Escherichia coli. Mol Gen Genet. 1978 Oct 25;166(1):75–84. doi: 10.1007/BF00379731. [DOI] [PubMed] [Google Scholar]
  4. Cornelis G., Luke R. K., Richmond M. H. Fermentation of raffinose by lactose-fermenting strains of Yersinia enterocolitica and by sucrose-fermenting strains of Escherichia coli. J Clin Microbiol. 1978 Feb;7(2):180–183. doi: 10.1128/jcm.7.2.180-183.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gasent-Ramírez J. M., Codón A. C., Benítez T. Characterization of genetically transformed Saccharomyces cerevisiae baker's yeasts able to metabolize melibiose. Appl Environ Microbiol. 1995 Jun;61(6):2113–2121. doi: 10.1128/aem.61.6.2113-2121.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ingram L. O., Buttke T. M. Effects of alcohols on micro-organisms. Adv Microb Physiol. 1984;25:253–300. doi: 10.1016/s0065-2911(08)60294-5. [DOI] [PubMed] [Google Scholar]
  7. Ingram L. O., Conway T., Clark D. P., Sewell G. W., Preston J. F. Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol. 1987 Oct;53(10):2420–2425. doi: 10.1128/aem.53.10.2420-2425.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ingram L. O., Conway T. Expression of Different Levels of Ethanologenic Enzymes from Zymomonas mobilis in Recombinant Strains of Escherichia coli. Appl Environ Microbiol. 1988 Feb;54(2):397–404. doi: 10.1128/aem.54.2.397-404.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Katzen R., Fowler D. E. Ethanol from lignocellulosic wastes with utilization of recombinant bacteria. Appl Biochem Biotechnol. 1994 Spring;45-46:697–707. doi: 10.1007/BF02941841. [DOI] [PubMed] [Google Scholar]
  10. Krulwich T. A., Quirk P. G., Guffanti A. A. Uncoupler-resistant mutants of bacteria. Microbiol Rev. 1990 Mar;54(1):52–65. doi: 10.1128/mr.54.1.52-65.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lindsay S. E., Bothast R. J., Ingram L. O. Improved strains of recombinant Escherichia coli for ethanol production from sugar mixtures. Appl Microbiol Biotechnol. 1995 Apr;43(1):70–75. doi: 10.1007/BF00170625. [DOI] [PubMed] [Google Scholar]
  12. Ohta K., Beall D. S., Mejia J. P., Shanmugam K. T., Ingram L. O. Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol. 1991 Apr;57(4):893–900. doi: 10.1128/aem.57.4.893-900.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Orskov I., Orskov F. Plasmid-determined H2S character in Escherichia coli and its relation to plasmid-carried raffinose fermentation and tetracycline resistance characters. Examination of 32 H2S-positive strains isolated during the years 1950 to 1971. J Gen Microbiol. 1973 Aug;77(2):487–499. doi: 10.1099/00221287-77-2-487. [DOI] [PubMed] [Google Scholar]
  14. Osman Y. A., Ingram L. O. Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4. J Bacteriol. 1985 Oct;164(1):173–180. doi: 10.1128/jb.164.1.173-180.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schmid K., Ritschewald S., Schmitt R. Relationships among raffinose plasmids determined by the immunochemical cross-reaction of their alpha-galactosidases. J Gen Microbiol. 1979 Oct;114(2):477–481. doi: 10.1099/00221287-114-2-477. [DOI] [PubMed] [Google Scholar]
  16. Schmid K., Schmitt R. Raffinose metabolism in Escherichia coli K12. Purification and properties of a new alpha-galactosidase specified by a transmissible plasmid. Eur J Biochem. 1976 Aug 1;67(1):95–104. doi: 10.1111/j.1432-1033.1976.tb10637.x. [DOI] [PubMed] [Google Scholar]
  17. Smith H. W., Parsell Z. Transmissible substrate-utilizing ability in enterobacteria. J Gen Microbiol. 1975 Mar;87(1):129–140. doi: 10.1099/00221287-87-1-129. [DOI] [PubMed] [Google Scholar]
  18. Vrljic M., Kronemeyer W., Sahm H., Eggeling L. Unbalance of L-lysine flux in Corynebacterium glutamicum and its use for the isolation of excretion-defective mutants. J Bacteriol. 1995 Jul;177(14):4021–4027. doi: 10.1128/jb.177.14.4021-4027.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wood B. E., Ingram L. O. Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. Appl Environ Microbiol. 1992 Jul;58(7):2103–2110. doi: 10.1128/aem.58.7.2103-2110.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES