Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Mar;179(6):1918–1923. doi: 10.1128/jb.179.6.1918-1923.1997

Posttranscriptional modification of tRNA in psychrophilic bacteria.

J J Dalluge 1, T Hamamoto 1, K Horikoshi 1, R Y Morita 1, K O Stetter 1, J A McCloskey 1
PMCID: PMC178914  PMID: 9068636

Abstract

Posttranscriptional modification in tRNA is known to play a multiplicity of functional roles, including maintenance of tertiary structure and cellular adaptation to environmental factors such as temperature. Nucleoside modification has been studied in unfractionated tRNA from three psychrophilic bacteria (ANT-300 and Vibrio sp. strains 5710 and 29-6) and one psychrotrophic bacterium (Lactobacillus bavaricus). Based on analysis of total enzymatic hydrolysates by liquid chromatography-mass spectrometry, unprecedented low amounts of modification were found in the psychrophiles, particularly from the standpoint of structural diversity of modifications observed. Thirteen to 15 different forms of posttranscriptional modification were found in the psychrophiles, and 10 were found in L. bavaricus, compared with approximately 29 known to occur in bacterial mesophiles and 24 to 31 known to occur in the archaeal hyperthermophiles. The four most abundant modified nucleosides in tRNA from each organism were dihydrouridine, pseudouridine, 7-methylguanosine, and 5-methyluridine. The molar abundances of the latter three nucleosides were comparable to those found in tRNA from Escherichia coli. By contrast, the high levels of dihydrouridine observed in all three psychrophiles are unprecedented for any organism in any of the three phylogenetic domains. tRNA from these organisms contains 40 to 70% more dihydrouridine, on average, than that of the mesophile E. coli or the psychrotroph L. bavaricus. This finding supports the concept that a functional role for dihydrouridine is in maintenance of conformational flexibility of RNA, especially important to organisms growing under conditions where the dynamics of thermal motion are severely compromised. This is in contrast to the role of modifications contained in RNA from thermophiles, which is to reduce regional RNA flexibility and provide structural stability to RNA for adaptation to high temperature.

Full Text

The Full Text of this article is available as a PDF (111.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agris P. F., Koh H., Söll D. The effect of growth temperatures on the in vivo ribose methylation of Bacillus stearothermophilus transfer RNA. Arch Biochem Biophys. 1973 Jan;154(1):277–282. doi: 10.1016/0003-9861(73)90058-1. [DOI] [PubMed] [Google Scholar]
  2. Björk G. R., Ericson J. U., Gustafsson C. E., Hagervall T. G., Jönsson Y. H., Wikström P. M. Transfer RNA modification. Annu Rev Biochem. 1987;56:263–287. doi: 10.1146/annurev.bi.56.070187.001403. [DOI] [PubMed] [Google Scholar]
  3. Buck M., Connick M., Ames B. N. Complete analysis of tRNA-modified nucleosides by high-performance liquid chromatography: the 29 modified nucleosides of Salmonella typhimurium and Escherichia coli tRNA. Anal Biochem. 1983 Feb 15;129(1):1–13. doi: 10.1016/0003-2697(83)90044-1. [DOI] [PubMed] [Google Scholar]
  4. Burggraf S., Olsen G. J., Stetter K. O., Woese C. R. A phylogenetic analysis of Aquifex pyrophilus. Syst Appl Microbiol. 1992 Aug;15(3):352–356. doi: 10.1016/S0723-2020(11)80207-9. [DOI] [PubMed] [Google Scholar]
  5. Crain P. F., McCloskey J. A. The RNA modification database. Nucleic Acids Res. 1997 Jan 1;25(1):126–127. doi: 10.1093/nar/25.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crain P. F. Preparation and enzymatic hydrolysis of DNA and RNA for mass spectrometry. Methods Enzymol. 1990;193:782–790. doi: 10.1016/0076-6879(90)93450-y. [DOI] [PubMed] [Google Scholar]
  7. Dalluge J. J., Hashizume T., McCloskey J. A. Quantitative measurement of dihydrouridine in RNA using isotope dilution liquid chromatography-mass spectrometry (LC/MS). Nucleic Acids Res. 1996 Aug 15;24(16):3242–3245. doi: 10.1093/nar/24.16.3242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dalluge J. J., Hashizume T., Sopchik A. E., McCloskey J. A., Davis D. R. Conformational flexibility in RNA: the role of dihydrouridine. Nucleic Acids Res. 1996 Mar 15;24(6):1073–1079. doi: 10.1093/nar/24.6.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dao V., Guenther R. H., Agris P. F. The role of 5-methylcytidine in the anticodon arm of yeast tRNA(Phe): site-specific Mg2+ binding and coupled conformational transition in DNA analogs. Biochemistry. 1992 Nov 17;31(45):11012–11019. doi: 10.1021/bi00160a010. [DOI] [PubMed] [Google Scholar]
  10. Davail S., Feller G., Narinx E., Gerday C. Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin from the antarctic psychrophile Bacillus TA41. J Biol Chem. 1994 Jul 1;269(26):17448–17453. [PubMed] [Google Scholar]
  11. Davis D. R. Stabilization of RNA stacking by pseudouridine. Nucleic Acids Res. 1995 Dec 25;23(24):5020–5026. doi: 10.1093/nar/23.24.5020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DeLong E. F., Wu K. Y., Prézelin B. B., Jovine R. V. High abundance of Archaea in Antarctic marine picoplankton. Nature. 1994 Oct 20;371(6499):695–697. doi: 10.1038/371695a0. [DOI] [PubMed] [Google Scholar]
  13. Edmonds C. G., Crain P. F., Gupta R., Hashizume T., Hocart C. H., Kowalak J. A., Pomerantz S. C., Stetter K. O., McCloskey J. A. Posttranscriptional modification of tRNA in thermophilic archaea (Archaebacteria). J Bacteriol. 1991 May;173(10):3138–3148. doi: 10.1128/jb.173.10.3138-3148.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Feller G., Payan F., Theys F., Qian M., Haser R., Gerday C. Stability and structural analysis of alpha-amylase from the antarctic psychrophile Alteromonas haloplanctis A23. Eur J Biochem. 1994 Jun 1;222(2):441–447. doi: 10.1111/j.1432-1033.1994.tb18883.x. [DOI] [PubMed] [Google Scholar]
  15. Forterre P. A hot topic: the origin of hyperthermophiles. Cell. 1996 Jun 14;85(6):789–792. doi: 10.1016/s0092-8674(00)81262-3. [DOI] [PubMed] [Google Scholar]
  16. Grosjean H., Sprinzl M., Steinberg S. Posttranscriptionally modified nucleosides in transfer RNA: their locations and frequencies. Biochimie. 1995;77(1-2):139–141. doi: 10.1016/0300-9084(96)88117-x. [DOI] [PubMed] [Google Scholar]
  17. Hall K. B., Sampson J. R., Uhlenbeck O. C., Redfield A. G. Structure of an unmodified tRNA molecule. Biochemistry. 1989 Jul 11;28(14):5794–5801. doi: 10.1021/bi00440a014. [DOI] [PubMed] [Google Scholar]
  18. Kawai G., Yamamoto Y., Kamimura T., Masegi T., Sekine M., Hata T., Iimori T., Watanabe T., Miyazawa T., Yokoyama S. Conformational rigidity of specific pyrimidine residues in tRNA arises from posttranscriptional modifications that enhance steric interaction between the base and the 2'-hydroxyl group. Biochemistry. 1992 Feb 4;31(4):1040–1046. doi: 10.1021/bi00119a012. [DOI] [PubMed] [Google Scholar]
  19. Kowalak J. A., Dalluge J. J., McCloskey J. A., Stetter K. O. The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. Biochemistry. 1994 Jun 28;33(25):7869–7876. doi: 10.1021/bi00191a014. [DOI] [PubMed] [Google Scholar]
  20. Kuchino Y., Beier H., Akita N., Nishimura S. Natural UAG suppressor glutamine tRNA is elevated in mouse cells infected with Moloney murine leukemia virus. Proc Natl Acad Sci U S A. 1987 May;84(9):2668–2672. doi: 10.1073/pnas.84.9.2668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lazcano A., Miller S. L. The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell. 1996 Jun 14;85(6):793–798. doi: 10.1016/s0092-8674(00)81263-5. [DOI] [PubMed] [Google Scholar]
  22. Morita R. Y. Psychrophilic bacteria. Bacteriol Rev. 1975 Jun;39(2):144–167. doi: 10.1128/br.39.2.144-167.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moyer C. L., Morita R. Y. Effect of growth rate and starvation-survival on the viability and stability of a psychrophilic marine bacterium. Appl Environ Microbiol. 1989 May;55(5):1122–1127. doi: 10.1128/aem.55.5.1122-1127.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moyer C. L., Tiedje J. M., Dobbs F. C., Karl D. M. A computer-simulated restriction fragment length polymorphism analysis of bacterial small-subunit rRNA genes: efficacy of selected tetrameric restriction enzymes for studies of microbial diversity in nature. Appl Environ Microbiol. 1996 Jul;62(7):2501–2507. doi: 10.1128/aem.62.7.2501-2507.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pace N. R. Origin of life--facing up to the physical setting. Cell. 1991 May 17;65(4):531–533. doi: 10.1016/0092-8674(91)90082-a. [DOI] [PubMed] [Google Scholar]
  26. Pomerantz S. C., McCloskey J. A. Analysis of RNA hydrolyzates by liquid chromatography-mass spectrometry. Methods Enzymol. 1990;193:796–824. doi: 10.1016/0076-6879(90)93452-q. [DOI] [PubMed] [Google Scholar]
  27. Preston C. M., Wu K. Y., Molinski T. F., DeLong E. F. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6241–6246. doi: 10.1073/pnas.93.13.6241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Quigley G. J., Rich A. Structural domains of transfer RNA molecules. Science. 1976 Nov 19;194(4267):796–806. doi: 10.1126/science.790568. [DOI] [PubMed] [Google Scholar]
  29. Sampson J. R., Uhlenbeck O. C. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1033–1037. doi: 10.1073/pnas.85.4.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sprinzl M., Steegborn C., Hübel F., Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1996 Jan 1;24(1):68–72. doi: 10.1093/nar/24.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sundaralingam M., Rao S. T., Abola J. Molecular conformation of dihydrouridine: puckered base nucleoside of transfer RNA. Science. 1971 May 14;172(3984):725–727. doi: 10.1126/science.172.3984.725. [DOI] [PubMed] [Google Scholar]
  32. Watanabe K., Asai K., Oshima T., Kuchino Y. Chemical structure and thermal properties of initiator tRNA from Euphausia sperba in comparison with those of other eucaryotic initiator tRNAs. J Biochem. 1981 Nov;90(5):1259–1266. doi: 10.1093/oxfordjournals.jbchem.a133590. [DOI] [PubMed] [Google Scholar]
  33. Watanabe K., Oshima T., Iijima K., Yamaizumi Z., Nishimura S. Purification and thermal stability of several amino acid-specific tRNAs from an extreme thermophile, Thermus thermophilus HB8. J Biochem. 1980 Jan;87(1):1–13. doi: 10.1093/oxfordjournals.jbchem.a132713. [DOI] [PubMed] [Google Scholar]
  34. Watanabe K., Shinma M., Oshima T., Nishimura S. Heat-induced stability of tRNA from an extreme thermophile, Thermus thermophilus. Biochem Biophys Res Commun. 1976 Oct 4;72(3):1137–1144. doi: 10.1016/s0006-291x(76)80250-1. [DOI] [PubMed] [Google Scholar]
  35. Watanabe K., Yokoyama S., Hansske F., Kasai H., Miyazawa T. CD and NMR studies on the conformational thermostability of 2-thioribothymidine found in the T psi C loop of thermophile tRNA. Biochem Biophys Res Commun. 1979 Nov 28;91(2):671–677. doi: 10.1016/0006-291x(79)91574-2. [DOI] [PubMed] [Google Scholar]
  36. Westhof E., Sundaralingam M. Restrained refinement of the monoclinic form of yeast phenylalanine transfer RNA. Temperature factors and dynamics, coordinated waters, and base-pair propeller twist angles. Biochemistry. 1986 Aug 26;25(17):4868–4878. doi: 10.1021/bi00365a022. [DOI] [PubMed] [Google Scholar]
  37. Yamamoto Y., Yokoyama S., Miyazawa T., Watanabe K., Higuchi S. NMR analyses on the molecular mechanism of the conformational rigidity of 2-thioribothymidine, a modified nucleoside in extreme thermophile tRNAs. FEBS Lett. 1983 Jun 27;157(1):95–99. doi: 10.1016/0014-5793(83)81123-5. [DOI] [PubMed] [Google Scholar]
  38. Yokoyama S., Inagaki F., Miyazawa T. Advanced nuclear magnetic resonance lanthanide probe analyses of short-range conformational interrelations controlling ribonucleic acid structures. Biochemistry. 1981 May 12;20(10):2981–2988. doi: 10.1021/bi00513a041. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES