Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Mar;179(6):1951–1961. doi: 10.1128/jb.179.6.1951-1961.1997

Evidence for the role of redox carriers in photosynthesis gene expression and carotenoid biosynthesis in Rhodobacter sphaeroides 2.4.1.

J P O'Gara 1, S Kaplan 1
PMCID: PMC178919  PMID: 9068641

Abstract

Previous work from this laboratory revealed that alterations in the structure of the ccoNOQP operon of Rhodobacter sphaeroides 2.4.1 could lead to induction of the photosynthetic apparatus under aerobic growth conditions. Immediately downstream of the ccoNOQP operon is the rdxB gene, the first gene of the rdxBHIS cluster. The rdxB gene product is predicted to encode a membrane protein which can bind two [4Fe-4S] clusters. The ccoP gene product is a diheme cytochrome which is a component of the cbb3-type cytochrome oxidase. Under aerobic growth conditions, strains possessing ccoP and rdxB mutations both singly and in combination produced light-harvesting complexes, suggesting that normal functioning of these proteins is required to maintain repression of photosynthesis gene expression in the presence of oxygen. Analysis of the expression of puc::lacZ fusions under aerobic conditions revealed an approximately 12-fold increase in puc operon expression in the RDXB1 and CCOP1 mutant strains compared with that for wild-type 2.4.1. Similarly, puf::lacZ activity was observed to be elevated fourfold above wild-type levels. Further indication of the importance of the RdxB and CcoP proteins was derived from studies of mutant and wild-type cells grown under anoxygenic photosynthetic and nitrogen-fixing conditions. These mutant strains were observed to accumulate spheroidenone to approximately 50% or more of the total carotenoid. In wild-type cultures, spheroidenone normally accumulates to approximately 10 to 20% of the total carotenoid under the same growth conditions. This effect was most pronounced when both the rdxB and the ccoP mutations were present together in cells cultured under nitrogen-fixing photosynthetic growth conditions in which spheroidenone represented approximately 90% of the total carotenoid. We propose that mutations in the rdxB or ccoP gene may lead to changes in a membrane-generated redox signal or the accumulation of a critical redox intermediate in the mutant strains which results in increased photosynthesis gene expression under aerobic conditions by alteration of the activity of a transcriptional regulator(s) of photosynthesis gene expression. Mutations in these genes also appear to posttranscriptionally influence the terminal step of carotenoid biogenesis. Potential regulators interacting with an aberrant redox signal in the mutants and the possible nature of such a redox signal are discussed.

Full Text

The Full Text of this article is available as a PDF (428.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong G. A., Alberti M., Leach F., Hearst J. E. Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol Gen Genet. 1989 Apr;216(2-3):254–268. doi: 10.1007/BF00334364. [DOI] [PubMed] [Google Scholar]
  2. Batut J., Boistard P. Oxygen control in Rhizobium. Antonie Van Leeuwenhoek. 1994;66(1-3):129–150. doi: 10.1007/BF00871636. [DOI] [PubMed] [Google Scholar]
  3. COHEN-BAZIRE G., SISTROM W. R., STANIER R. Y. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol. 1957 Feb;49(1):25–68. doi: 10.1002/jcp.1030490104. [DOI] [PubMed] [Google Scholar]
  4. David M., Daveran M. L., Batut J., Dedieu A., Domergue O., Ghai J., Hertig C., Boistard P., Kahn D. Cascade regulation of nif gene expression in Rhizobium meliloti. Cell. 1988 Aug 26;54(5):671–683. doi: 10.1016/s0092-8674(88)80012-6. [DOI] [PubMed] [Google Scholar]
  5. Davis J., Donohue T. J., Kaplan S. Construction, characterization, and complementation of a Puf- mutant of Rhodobacter sphaeroides. J Bacteriol. 1988 Jan;170(1):320–329. doi: 10.1128/jb.170.1.320-329.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eraso J. M., Kaplan S. Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase. J Bacteriol. 1995 May;177(10):2695–2706. doi: 10.1128/jb.177.10.2695-2706.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eraso J. M., Kaplan S. prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. J Bacteriol. 1994 Jan;176(1):32–43. doi: 10.1128/jb.176.1.32-43.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. García-Horsman J. A., Berry E., Shapleigh J. P., Alben J. O., Gennis R. B. A novel cytochrome c oxidase from Rhodobacter sphaeroides that lacks CuA. Biochemistry. 1994 Mar 15;33(10):3113–3119. doi: 10.1021/bi00176a046. [DOI] [PubMed] [Google Scholar]
  9. Gomelsky M., Kaplan S. Genetic evidence that PpsR from Rhodobacter sphaeroides 2.4.1 functions as a repressor of puc and bchF expression. J Bacteriol. 1995 Mar;177(6):1634–1637. doi: 10.1128/jb.177.6.1634-1637.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gong L., Kaplan S. Translational control of puf operon expression in Rhodobacter sphaeroides 2.4.1. Microbiology. 1996 Aug;142(Pt 8):2057–2069. doi: 10.1099/13500872-142-8-2057. [DOI] [PubMed] [Google Scholar]
  11. Gong L., Lee J. K., Kaplan S. The Q gene of Rhodobacter sphaeroides: its role in puf operon expression and spectral complex assembly. J Bacteriol. 1994 May;176(10):2946–2961. doi: 10.1128/jb.176.10.2946-2961.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hosler J. P., Fetter J., Tecklenburg M. M., Espe M., Lerma C., Ferguson-Miller S. Cytochrome aa3 of Rhodobacter sphaeroides as a model for mitochondrial cytochrome c oxidase. Purification, kinetics, proton pumping, and spectral analysis. J Biol Chem. 1992 Dec 5;267(34):24264–24272. [PubMed] [Google Scholar]
  13. Kahn D., David M., Domergue O., Daveran M. L., Ghai J., Hirsch P. R., Batut J. Rhizobium meliloti fixGHI sequence predicts involvement of a specific cation pump in symbiotic nitrogen fixation. J Bacteriol. 1989 Feb;171(2):929–939. doi: 10.1128/jb.171.2.929-939.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene. 1988 Oct 15;70(1):191–197. doi: 10.1016/0378-1119(88)90117-5. [DOI] [PubMed] [Google Scholar]
  15. Kiley P. J., Kaplan S. Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. Microbiol Rev. 1988 Mar;52(1):50–69. doi: 10.1128/mr.52.1.50-69.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lang H. P., Cogdell R. J., Takaichi S., Hunter C. N. Complete DNA sequence, specific Tn5 insertion map, and gene assignment of the carotenoid biosynthesis pathway of Rhodobacter sphaeroides. J Bacteriol. 1995 Apr;177(8):2064–2073. doi: 10.1128/jb.177.8.2064-2073.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lee J. K., Kaplan S. Isolation and characterization of trans-acting mutations involved in oxygen regulation of puc operon transcription in Rhodobacter sphaeroides. J Bacteriol. 1992 Feb;174(4):1158–1171. doi: 10.1128/jb.174.4.1158-1171.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lee J. K., Kaplan S. Transcriptional regulation of puc operon expression in Rhodobacter sphaeroides. Analysis of the cis-acting downstream regulatory sequence. J Biol Chem. 1995 Sep 1;270(35):20453–20458. [PubMed] [Google Scholar]
  19. Lee J. K., Kaplan S. cis-acting regulatory elements involved in oxygen and light control of puc operon transcription in Rhodobacter sphaeroides. J Bacteriol. 1992 Feb;174(4):1146–1157. doi: 10.1128/jb.174.4.1146-1157.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee J. K., Kiley P. J., Kaplan S. Posttranscriptional control of puc operon expression of B800-850 light-harvesting complex formation in Rhodobacter sphaeroides. J Bacteriol. 1989 Jun;171(6):3391–3405. doi: 10.1128/jb.171.6.3391-3405.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Marrs B., Gest H. Genetic mutations affecting the respiratory electron-transport system of the photosynthetic bacterium Rhodopseudomonas capsulata. J Bacteriol. 1973 Jun;114(3):1045–1051. doi: 10.1128/jb.114.3.1045-1051.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Meinhardt S. W., Kiley P. J., Kaplan S., Crofts A. R., Harayama S. Characterization of light-harvesting mutants of Rhodopseudomonas sphaeroides. I. Measurement of the efficiency of energy transfer from light-harvesting complexes to the reaction center. Arch Biochem Biophys. 1985 Jan;236(1):130–139. doi: 10.1016/0003-9861(85)90612-5. [DOI] [PubMed] [Google Scholar]
  23. Neidle E. L., Kaplan S. 5-Aminolevulinic acid availability and control of spectral complex formation in hemA and hemT mutants of Rhodobacter sphaeroides. J Bacteriol. 1993 Apr;175(8):2304–2313. doi: 10.1128/jb.175.8.2304-2313.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Neidle E. L., Kaplan S. Rhodobacter sphaeroides rdxA, a homolog of Rhizobium meliloti fixG, encodes a membrane protein which may bind cytoplasmic [4Fe-4S] clusters. J Bacteriol. 1992 Oct;174(20):6444–6454. doi: 10.1128/jb.174.20.6444-6454.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Preisig O., Anthamatten D., Hennecke H. Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3309–3313. doi: 10.1073/pnas.90.8.3309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Preisig O., Zufferey R., Hennecke H. The Bradyrhizobium japonicum fixGHIS genes are required for the formation of the high-affinity cbb3-type cytochrome oxidase. Arch Microbiol. 1996 May;165(5):297–305. doi: 10.1007/s002030050330. [DOI] [PubMed] [Google Scholar]
  27. Prentki P., Krisch H. M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. doi: 10.1016/0378-1119(84)90059-3. [DOI] [PubMed] [Google Scholar]
  28. SHNEOUR E. A. Carotenoid pigment conversion in Rhodopseudomonas spheroides. Biochim Biophys Acta. 1962 Aug 27;62:534–540. doi: 10.1016/0006-3002(62)90235-4. [DOI] [PubMed] [Google Scholar]
  29. SHNEOUR E. A. The source of oxygen in Rhodopseudomonas spheroides carotenoid pigment conversion. Biochim Biophys Acta. 1962 Dec 17;65:510–511. doi: 10.1016/0006-3002(62)90455-9. [DOI] [PubMed] [Google Scholar]
  30. Sockett R. E., Donohue T. J., Varga A. R., Kaplan S. Control of photosynthetic membrane assembly in Rhodobacter sphaeroides mediated by puhA and flanking sequences. J Bacteriol. 1989 Jan;171(1):436–446. doi: 10.1128/jb.171.1.436-446.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tai T. N., Havelka W. A., Kaplan S. A broad-host-range vector system for cloning and translational lacZ fusion analysis. Plasmid. 1988 May;19(3):175–188. doi: 10.1016/0147-619x(88)90037-6. [DOI] [PubMed] [Google Scholar]
  32. Thöny-Meyer L., Beck C., Preisig O., Hennecke H. The ccoNOQP gene cluster codes for a cb-type cytochrome oxidase that functions in aerobic respiration of Rhodobacter capsulatus. Mol Microbiol. 1994 Nov;14(4):705–716. doi: 10.1111/j.1365-2958.1994.tb01308.x. [DOI] [PubMed] [Google Scholar]
  33. Yeliseev A. A., Eraso J. M., Kaplan S. Differential carotenoid composition of the B875 and B800-850 photosynthetic antenna complexes in Rhodobacter sphaeroides 2.4.1: involvement of spheroidene and spheroidenone in adaptation to changes in light intensity and oxygen availability. J Bacteriol. 1996 Oct;178(20):5877–5883. doi: 10.1128/jb.178.20.5877-5883.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yeliseev A. A., Kaplan S. A sensory transducer homologous to the mammalian peripheral-type benzodiazepine receptor regulates photosynthetic membrane complex formation in Rhodobacter sphaeroides 2.4.1. J Biol Chem. 1995 Sep 8;270(36):21167–21175. doi: 10.1074/jbc.270.36.21167. [DOI] [PubMed] [Google Scholar]
  35. Zeilstra-Ryalls J. H., Kaplan S. Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: the role of the fnrL gene. J Bacteriol. 1995 Nov;177(22):6422–6431. doi: 10.1128/jb.177.22.6422-6431.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zeilstra-Ryalls J. H., Kaplan S. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: regulation through alterations in the cellular redox state. J Bacteriol. 1996 Feb;178(4):985–993. doi: 10.1128/jb.178.4.985-993.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zufferey R., Preisig O., Hennecke H., Thöny-Meyer L. Assembly and function of the cytochrome cbb3 oxidase subunits in Bradyrhizobium japonicum. J Biol Chem. 1996 Apr 12;271(15):9114–9119. doi: 10.1074/jbc.271.15.9114. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES