Abstract
Anaerobic, but not aerobic, cultures of Escherichia coli accumulated Tc(VII) and reduced it to a black insoluble precipitate. Tc was the predominant element detected when the precipitate was analyzed by proton-induced X-ray emission. Electron microscopy in combination with energy-dispersive X-ray analysis showed that the site of Tc deposition was intracellular. It is proposed that Tc precipitation was a result of enzymatically mediated reduction of Tc(VII) to an insoluble oxide. Formate was an effective electron donor for Tc(VII) reduction which could be replaced by pyruvate, glucose, or glycerol but not by acetate, lactate, succinate, or ethanol. Mutants defective in the synthesis of the transcription factor FNR, in molybdenum cofactor (molybdopterin guanine dinucleotide [MGD]) synthesis, or in formate dehydrogenase H synthesis were all defective in Tc(VII) reduction, implicating a role for the formate hydrogenlyase complex in Tc(VII) reduction. The following observations confirmed that the hydrogenase III (Hyc) component of formate hydrogenlyase in both essential and sufficient for Tc(VII) reduction: (i) dihydrogen could replace formate as an effective electron donor for Tc(VII) reduction by wild-type bacteria and mutants defective in MGD synthesis; (ii) the inability of fnr mutants to reduce Tc(VII) can be suppressed phenotypically by growth with 250 microM Ni2+ and formate; (iii) Tc(VII) reduction is defective in a hyc mutant; (iv) the ability to reduce Tc(VII) was repressed during anaerobic growth in the presence of nitrate, but this repression was counteracted by the addition of formate to the growth medium; (v) H2, but not formate, was an effective electron donor for a Sel- mutant which is unable to incorporate selenocysteine into any of the three known formate dehydrogenases of E. coli. This appears to be the first report of Hyc functioning as an H2-oxidizing hydrogenase or as a dissimilatory metal ion reductase in enteric bacteria.
Full Text
The Full Text of this article is available as a PDF (340.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birkmann A., Zinoni F., Sawers G., Böck A. Factors affecting transcriptional regulation of the formate-hydrogen-lyase pathway of Escherichia coli. Arch Microbiol. 1987 Jun;148(1):44–51. doi: 10.1007/BF00429646. [DOI] [PubMed] [Google Scholar]
- Casadaban M. J., Cohen S. N. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4530–4533. doi: 10.1073/pnas.76.9.4530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cataldo D. A., Garland T. R., Wildung R. E., Fellows R. J. Comparative metabolic behavior and interrelationships of Tc and S in soybean plants. Health Phys. 1989 Aug;57(2):281–287. doi: 10.1097/00004032-198908000-00006. [DOI] [PubMed] [Google Scholar]
- Cole J. Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation? FEMS Microbiol Lett. 1996 Feb 1;136(1):1–11. doi: 10.1111/j.1574-6968.1996.tb08017.x. [DOI] [PubMed] [Google Scholar]
- Cole S. T., Condon C., Lemire B. D., Weiner J. H. Molecular biology, biochemistry and bioenergetics of fumarate reductase, a complex membrane-bound iron-sulfur flavoenzyme of Escherichia coli. Biochim Biophys Acta. 1985 Dec;811(4):381–403. doi: 10.1016/0304-4173(85)90008-4. [DOI] [PubMed] [Google Scholar]
- Crooke H., Cole J. The biogenesis of c-type cytochromes in Escherichia coli requires a membrane-bound protein, DipZ, with a protein disulphide isomerase-like domain. Mol Microbiol. 1995 Mar;15(6):1139–1150. doi: 10.1111/j.1365-2958.1995.tb02287.x. [DOI] [PubMed] [Google Scholar]
- Darwin A., Hussain H., Griffiths L., Grove J., Sambongi Y., Busby S., Cole J. Regulation and sequence of the structural gene for cytochrome c552 from Escherichia coli: not a hexahaem but a 50 kDa tetrahaem nitrite reductase. Mol Microbiol. 1993 Sep;9(6):1255–1265. doi: 10.1111/j.1365-2958.1993.tb01255.x. [DOI] [PubMed] [Google Scholar]
- Darwin A., Tormay P., Page L., Griffiths L., Cole J. Identification of the formate dehydrogenases and genetic determinants of formate-dependent nitrite reduction by Escherichia coli K12. J Gen Microbiol. 1993 Aug;139(8):1829–1840. doi: 10.1099/00221287-139-8-1829. [DOI] [PubMed] [Google Scholar]
- Grove J., Tanapongpipat S., Thomas G., Griffiths L., Crooke H., Cole J. Escherichia coli K-12 genes essential for the synthesis of c-type cytochromes and a third nitrate reductase located in the periplasm. Mol Microbiol. 1996 Feb;19(3):467–481. doi: 10.1046/j.1365-2958.1996.383914.x. [DOI] [PubMed] [Google Scholar]
- Henrot J. Bioaccumulation and chemical modification of Tc by soil bacteria. Health Phys. 1989 Aug;57(2):239–245. doi: 10.1097/00004032-198908000-00001. [DOI] [PubMed] [Google Scholar]
- Hussain H., Grove J., Griffiths L., Busby S., Cole J. A seven-gene operon essential for formate-dependent nitrite reduction to ammonia by enteric bacteria. Mol Microbiol. 1994 Apr;12(1):153–163. doi: 10.1111/j.1365-2958.1994.tb01004.x. [DOI] [PubMed] [Google Scholar]
- Knappe J., Sawers G. A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase system of Escherichia coli. FEMS Microbiol Rev. 1990 Aug;6(4):383–398. doi: 10.1111/j.1574-6968.1990.tb04108.x. [DOI] [PubMed] [Google Scholar]
- Li J., Stewart V. Localization of upstream sequence elements required for nitrate and anaerobic induction of fdn (formate dehydrogenase-N) operon expression in Escherichia coli K-12. J Bacteriol. 1992 Aug;174(15):4935–4942. doi: 10.1128/jb.174.15.4935-4942.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lloyd J. R., Macaskie L. E. A Novel PhosphorImager-Based Technique for Monitoring the Microbial Reduction of Technetium. Appl Environ Microbiol. 1996 Feb;62(2):578–582. doi: 10.1128/aem.62.2.578-582.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lovley D. R. Dissimilatory metal reduction. Annu Rev Microbiol. 1993;47:263–290. doi: 10.1146/annurev.mi.47.100193.001403. [DOI] [PubMed] [Google Scholar]
- Lovley D. R., Giovannoni S. J., White D. C., Champine J. E., Phillips E. J., Gorby Y. A., Goodwin S. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol. 1993;159(4):336–344. doi: 10.1007/BF00290916. [DOI] [PubMed] [Google Scholar]
- MacDonald H., Pope N. R., Cole J. A. Isolation, characterization and complementation analysis of nirB mutants of Escherichia coli deficient only in NADH-dependent nitrite reductase activity. J Gen Microbiol. 1985 Oct;131(10):2771–2782. doi: 10.1099/00221287-131-10-2771. [DOI] [PubMed] [Google Scholar]
- Macaskie L. E. The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: biodegradation and bioaccumulation as a means of treating radionuclide-containing streams. Crit Rev Biotechnol. 1991;11(1):41–112. doi: 10.3109/07388559109069183. [DOI] [PubMed] [Google Scholar]
- Metheringham R., Griffiths L., Crooke H., Forsythe S., Cole J. An essential role for DsbA in cytochrome c synthesis and formate-dependent nitrite reduction by Escherichia coli K-12. Arch Microbiol. 1995 Oct;164(4):301–307. doi: 10.1007/BF02529965. [DOI] [PubMed] [Google Scholar]
- Navarro C., Wu L. F., Mandrand-Berthelot M. A. The nik operon of Escherichia coli encodes a periplasmic binding-protein-dependent transport system for nickel. Mol Microbiol. 1993 Sep;9(6):1181–1191. doi: 10.1111/j.1365-2958.1993.tb01247.x. [DOI] [PubMed] [Google Scholar]
- Nealson K. H., Myers C. R. Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl Environ Microbiol. 1992 Feb;58(2):439–443. doi: 10.1128/aem.58.2.439-443.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Page L., Griffiths L., Cole J. A. Different physiological roles of two independent pathways for nitrite reduction to ammonia by enteric bacteria. Arch Microbiol. 1990;154(4):349–354. doi: 10.1007/BF00276530. [DOI] [PubMed] [Google Scholar]
- Pecher A., Zinoni F., Jatisatienr C., Wirth R., Hennecke H., Böck A. On the redox control of synthesis of anaerobically induced enzymes in enterobacteriaceae. Arch Microbiol. 1983 Nov;136(2):131–136. doi: 10.1007/BF00404787. [DOI] [PubMed] [Google Scholar]
- Pignolet L., Auvray F., Fonsny K., Capot F., Moureau Z. Role of various microorganisms on Tc behavior in sediments. Health Phys. 1989 Nov;57(5):791–800. doi: 10.1097/00004032-198911000-00013. [DOI] [PubMed] [Google Scholar]
- Rossmann R., Sawers G., Böck A. Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon. Mol Microbiol. 1991 Nov;5(11):2807–2814. doi: 10.1111/j.1365-2958.1991.tb01989.x. [DOI] [PubMed] [Google Scholar]
- Sauter M., Böhm R., Böck A. Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol. 1992 Jun;6(11):1523–1532. doi: 10.1111/j.1365-2958.1992.tb00873.x. [DOI] [PubMed] [Google Scholar]
- Sawers G., Heider J., Zehelein E., Böck A. Expression and operon structure of the sel genes of Escherichia coli and identification of a third selenium-containing formate dehydrogenase isoenzyme. J Bacteriol. 1991 Aug;173(16):4983–4993. doi: 10.1128/jb.173.16.4983-4993.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sawers G. The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie Van Leeuwenhoek. 1994;66(1-3):57–88. doi: 10.1007/BF00871633. [DOI] [PubMed] [Google Scholar]
- Shukla S. K. Ion exchange paper chromatography of Tc(IV), Tc(V) and Tc(VII) in hydrochloric acid. J Chromatogr. 1966 Jan;21(1):92–97. doi: 10.1016/s0021-9673(01)91264-6. [DOI] [PubMed] [Google Scholar]
- Spiro S. The FNR family of transcriptional regulators. Antonie Van Leeuwenhoek. 1994;66(1-3):23–36. doi: 10.1007/BF00871630. [DOI] [PubMed] [Google Scholar]
- Stewart V. Requirement of Fnr and NarL functions for nitrate reductase expression in Escherichia coli K-12. J Bacteriol. 1982 Sep;151(3):1320–1325. doi: 10.1128/jb.151.3.1320-1325.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOOLFOLK C. A., WHITELEY H. R. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J Bacteriol. 1962 Oct;84:647–658. doi: 10.1128/jb.84.4.647-658.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu L. F., Mandrand-Berthelot M. A. Genetic and physiological characterization of new Escherichia coli mutants impaired in hydrogenase activity. Biochimie. 1986 Jan;68(1):167–179. doi: 10.1016/s0300-9084(86)81081-1. [DOI] [PubMed] [Google Scholar]
- Wu L. F., Mandrand M. A. Microbial hydrogenases: primary structure, classification, signatures and phylogeny. FEMS Microbiol Rev. 1993 Apr;10(3-4):243–269. doi: 10.1111/j.1574-6968.1993.tb05870.x. [DOI] [PubMed] [Google Scholar]
- Yanke L. J., Bryant R. D., Laishley E. J. Hydrogenase I of Clostridium pasteurianum functions as a novel selenite reductase. Anaerobe. 1995 Feb;1(1):61–67. doi: 10.1016/s1075-9964(95)80457-9. [DOI] [PubMed] [Google Scholar]