Abstract
The ribG gene at the 5' end of the riboflavin operon of Bacillus subtilis and a reading frame at 442 kb on the Escherichia coli chromosome (subsequently designated ribD) show similarity with deoxycytidylate deaminase and with the RIB7 gene of Saccharomyces cerevisiae. The ribG gene of B. subtilis and the ribD gene of E. coli were expressed in recombinant E. coli strains and were shown to code for bifunctional proteins catalyzing the second and third steps in the biosynthesis of riboflavin, i.e., the deamination of 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate (deaminase) and the subsequent reduction of the ribosyl side chain (reductase). The recombinant proteins specified by the ribD gene of E. coli and the ribG gene of B. subtilis were purified to homogeneity. NADH as well as NADPH can be used as a cosubstrate for the reductase of both microorganisms under study. Expression of the N-terminal or C-terminal part of the RibG protein yielded proteins with deaminase or reductase activity, respectively; however, the truncated proteins were rather unstable.
Full Text
The Full Text of this article is available as a PDF (133.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bacher A. Heavy riboflavin synthase from Bacillus subtilis. Methods Enzymol. 1986;122:192–199. doi: 10.1016/0076-6879(86)22170-9. [DOI] [PubMed] [Google Scholar]
- Bacher A., Lingens F. Biosynthesis of riboflavin. Formation of 2,5-diamino-6-hydroxy-4-(1'-D-ribitylamino)pyrimidine in a riboflavin auxotroph. J Biol Chem. 1970 Sep 25;245(18):4647–4652. [PubMed] [Google Scholar]
- Baur A., Schaaff-Gerstenschläger I., Boles E., Miosga T., Rose M., Zimmermann F. K. Sequence of a 4.8 kb fragment of Saccharomyces cerevisiae chromosome II including three essential open reading frames. Yeast. 1993 Mar;9(3):289–293. doi: 10.1002/yea.320090308. [DOI] [PubMed] [Google Scholar]
- Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burrows R. B., Brown G. M. Presence of Escherichia coli of a deaminase and a reductase involved in biosynthesis of riboflavin. J Bacteriol. 1978 Nov;136(2):657–667. doi: 10.1128/jb.136.2.657-667.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harzer G., Rokos H., Otto M. K., Bacher A., Ghisla S. Biosynthesis of riboflavin. 6,7-Dimethyl-8-ribityllumazine 5'-phosphate is not a substrate for riboflavin synthase. Biochim Biophys Acta. 1978 Apr 19;540(1):48–54. doi: 10.1016/0304-4165(78)90433-6. [DOI] [PubMed] [Google Scholar]
- Hennecke H., Günther I., Binder F. A novel cloning vector for the direct selection of recombinant DNA in E. coli. Gene. 1982 Sep;19(2):231–234. doi: 10.1016/0378-1119(82)90011-7. [DOI] [PubMed] [Google Scholar]
- Hollander I., Brown G. M. Biosynthesis of riboflavin: reductase and deaminase of Ashbya gossypii. Biochem Biophys Res Commun. 1979 Jul 27;89(2):759–763. doi: 10.1016/0006-291x(79)90694-6. [DOI] [PubMed] [Google Scholar]
- Ludwig H. C., Lottspeich F., Henschen A., Ladenstein R., Bacher A. Heavy riboflavin synthase of Bacillus subtilis. Primary structure of the beta subunit. J Biol Chem. 1987 Jan 25;262(3):1016–1021. [PubMed] [Google Scholar]
- Maley G. F., Guarino D. U., Maley F. Complete amino acid sequence of an allosteric enzyme, T2 bacteriophage deoxycytidylate deaminase. J Biol Chem. 1983 Jul 10;258(13):8290–8297. [PubMed] [Google Scholar]
- McIntosh E. M., Haynes R. H. Sequence and expression of the dCMP deaminase gene (DCD1) of Saccharomyces cerevisiae. Mol Cell Biol. 1986 May;6(5):1711–1721. doi: 10.1128/mcb.6.5.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nielsen P., Bacher A. Biosynthesis of riboflavin. Characterization of the product of the deaminase. Biochim Biophys Acta. 1981 Dec 15;662(2):312–317. doi: 10.1016/0005-2744(81)90044-9. [DOI] [PubMed] [Google Scholar]
- Oltmanns O., Bacher A. Biosynthesis of riboflavine in Saccharomyces cerevisiae: the role of genes rib 1 and rib 7 . J Bacteriol. 1972 Jun;110(3):818–822. doi: 10.1128/jb.110.3.818-822.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richter G., Ritz H., Katzenmeier G., Volk R., Kohnle A., Lottspeich F., Allendorf D., Bacher A. Biosynthesis of riboflavin: cloning, sequencing, mapping, and expression of the gene coding for GTP cyclohydrolase II in Escherichia coli. J Bacteriol. 1993 Jul;175(13):4045–4051. doi: 10.1128/jb.175.13.4045-4051.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schott K., Kellermann J., Lottspeich F., Bacher A. Riboflavin synthases of Bacillus subtilis. Purification and amino acid sequence of the alpha subunit. J Biol Chem. 1990 Mar 15;265(8):4204–4209. [PubMed] [Google Scholar]
- Taura T., Ueguchi C., Shiba K., Ito K. Insertional disruption of the nusB (ssyB) gene leads to cold-sensitive growth of Escherichia coli and suppression of the secY24 mutation. Mol Gen Genet. 1992 Sep;234(3):429–432. doi: 10.1007/BF00538702. [DOI] [PubMed] [Google Scholar]
- Zamenhof P. J., Villarejo M. Construction and properties of Escherichia coli strains exhibiting -complementation of -galactosidase fragments in vivo. J Bacteriol. 1972 Apr;110(1):171–178. doi: 10.1128/jb.110.1.171-178.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]