Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Mar;179(6):2068–2072. doi: 10.1128/jb.179.6.2068-2072.1997

Isolation and characterization of Rhizobium etli mutants altered in degradation of asparagine.

A Huerta-Zepeda 1, L Ortuño 1, G Du Pont 1, S Durán 1, A Lloret 1, H Merchant-Larios 1, J Calderón 1
PMCID: PMC178935  PMID: 9068657

Abstract

Rhizobium etli mutants unable to grow on asparagine as the nitrogen and carbon source were isolated. Two kinds of mutants were obtained: AHZ1, with very low levels of aspartase activity, and AHZ7, with low levels of asparaginase and very low levels of aspartase compared to the wild-type strain. R. etli had two asparaginases differentiated by their thermostabilities, electrophoretic mobilities, and modes of regulation. The AHZ mutants nodulated as did the wild-type strain and had nitrogenase levels similar to that of the wild-type strain.

Full Text

The Full Text of this article is available as a PDF (145.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson M. R., Fisher S. H. Identification of genes and gene products whose expression is activated during nitrogen-limited growth in Bacillus subtilis. J Bacteriol. 1991 Jan;173(1):23–27. doi: 10.1128/jb.173.1.23-27.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beringer J. E. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol. 1974 Sep;84(1):188–198. doi: 10.1099/00221287-84-1-188. [DOI] [PubMed] [Google Scholar]
  3. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
  4. CHANEY A. L., MARBACH E. P. Modified reagents for determination of urea and ammonia. Clin Chem. 1962 Apr;8:130–132. [PubMed] [Google Scholar]
  5. Calderón J., Cooper A. J., Gelbard A. S., Mora J. 13N isotope studies of glutamine assimilation pathways in Neurospora crassa. J Bacteriol. 1989 Mar;171(3):1772–1774. doi: 10.1128/jb.171.3.1772-1774.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Calderón J., Martínez L. M. Regulation of ammonium ion assimilation enzymes in Neurospora crassa nit-2 and ms-5 mutant strains. Biochem Genet. 1993 Oct;31(9-10):425–439. doi: 10.1007/BF02396227. [DOI] [PubMed] [Google Scholar]
  7. Calderón J., Mora J. Glutamine assimilation pathways in Neurospora crassa growing on glutamine as sole nitrogen and carbon source. J Gen Microbiol. 1989 Oct;135(10):2699–2707. doi: 10.1099/00221287-135-10-2699. [DOI] [PubMed] [Google Scholar]
  8. Calderón J., Morett E., Mora J. Omega-amidase pathway in the degradation of glutamine in Neurospora crassa. J Bacteriol. 1985 Feb;161(2):807–809. doi: 10.1128/jb.161.2.807-809.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cedar H., Schwartz J. H. Localization of the two-L-asparaginases in anaerobically grown Escherichia coli. J Biol Chem. 1967 Aug 25;242(16):3753–3755. [PubMed] [Google Scholar]
  10. Corbin D., Ditta G., Helinski D. R. Clustering of nitrogen fixation (nif) genes in Rhizobium meliloti. J Bacteriol. 1982 Jan;149(1):221–228. doi: 10.1128/jb.149.1.221-228.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Del Casale T., Sollitti P., Chesney R. H. Cytoplasmic L-asparaginase: isolation of a defective strain and mapping of ansA. J Bacteriol. 1983 Apr;154(1):513–515. doi: 10.1128/jb.154.1.513-515.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Durán S., Du Pont G., Huerta-Zepeda A., Calderón J. The role of glutaminase in Rhizobium etli: studies with a new mutant. Microbiology. 1995 Nov;141(Pt 11):2883–2889. doi: 10.1099/13500872-141-11-2883. [DOI] [PubMed] [Google Scholar]
  13. Friedman A. M., Long S. R., Brown S. E., Buikema W. J., Ausubel F. M. Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene. 1982 Jun;18(3):289–296. doi: 10.1016/0378-1119(82)90167-6. [DOI] [PubMed] [Google Scholar]
  14. Gilbert H. J., Blazek R., Bullman H. M., Minton N. P. Cloning and expression of the Erwinia chrysanthemi asparaginase gene in Escherichia coli and Erwinia carotovora. J Gen Microbiol. 1986 Jan;132(1):151–160. doi: 10.1099/00221287-132-1-151. [DOI] [PubMed] [Google Scholar]
  15. Iijima T., Diesterhaft M. D., Freese E. Sodium effect of growth on aspartate and genetic analysis of a Bacillus subtilis mutant with high aspartase activity. J Bacteriol. 1977 Mar;129(3):1440–1447. doi: 10.1128/jb.129.3.1440-1447.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jennings M. P., Beacham I. R. Co-dependent positive regulation of the ansB promoter of Escherichia coli by CRP and the FNR protein: a molecular analysis. Mol Microbiol. 1993 Jul;9(1):155–164. doi: 10.1111/j.1365-2958.1993.tb01677.x. [DOI] [PubMed] [Google Scholar]
  17. Jennings M. P., Scott S. P., Beacham I. R. Regulation of the ansB gene of Salmonella enterica. Mol Microbiol. 1993 Jul;9(1):165–172. doi: 10.1111/j.1365-2958.1993.tb01678.x. [DOI] [PubMed] [Google Scholar]
  18. Jerlström P. G., Bezjak D. A., Jennings M. P., Beacham I. R. Structure and expression in Escherichia coli K-12 of the L-asparaginase I-encoding ansA gene and its flanking regions. Gene. 1989 May 15;78(1):37–46. doi: 10.1016/0378-1119(89)90312-0. [DOI] [PubMed] [Google Scholar]
  19. Karsten W. E., Viola R. E. Kinetic studies of L-aspartase from Escherichia coli: pH-dependent activity changes. Arch Biochem Biophys. 1991 May 15;287(1):60–67. doi: 10.1016/0003-9861(91)90388-y. [DOI] [PubMed] [Google Scholar]
  20. Marcus M., Halpern Y. S. The metabolic pathway of glutamate in Escherichia coli K-12. Biochim Biophys Acta. 1969 Apr 1;177(2):314–320. doi: 10.1016/0304-4165(69)90141-x. [DOI] [PubMed] [Google Scholar]
  21. Mesas J. M., Gil J. A., Martín J. F. Characterization and partial purification of L-asparaginase from Corynebacterium glutamicum. J Gen Microbiol. 1990 Mar;136(3):515–519. doi: 10.1099/00221287-136-3-515. [DOI] [PubMed] [Google Scholar]
  22. Miyamoto K., Katsuki H. Possible physiological roles of aspartase, NAD- and NADP-requiring glutamate dehydrogenases of Pseudomonas fluorescens. J Biochem. 1992 Jul;112(1):52–56. doi: 10.1093/oxfordjournals.jbchem.a123864. [DOI] [PubMed] [Google Scholar]
  23. Mora J. Glutamine metabolism and cycling in Neurospora crassa. Microbiol Rev. 1990 Sep;54(3):293–304. doi: 10.1128/mr.54.3.293-304.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nishimura N., Kisumi M. Aspartase-hyperproducing mutants of Escherichia coli B. Appl Environ Microbiol. 1984 Dec;48(6):1072–1075. doi: 10.1128/aem.48.6.1072-1075.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rastogi V. K., Watson R. J. Aspartate aminotransferase activity is required for aspartate catabolism and symbiotic nitrogen fixation in Rhizobium meliloti. J Bacteriol. 1991 May;173(9):2879–2887. doi: 10.1128/jb.173.9.2879-2887.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rudolph F. B., Fromm H. J. The purification and properties of aspartase from Escherichia coli. Arch Biochem Biophys. 1971 Nov;147(1):92–98. doi: 10.1016/0003-9861(71)90313-4. [DOI] [PubMed] [Google Scholar]
  27. Russell L., Yamazaki H. The dependence of Escherichia coli asparaginase II formation on cyclic AMP and cyclic AMP receptor protein. Can J Microbiol. 1978 May;24(5):629–631. doi: 10.1139/m78-104. [DOI] [PubMed] [Google Scholar]
  28. Rózalska M., Mikucki J. Staphylococcal L-asparaginase: catabolic repression of synthesis. Acta Microbiol Pol. 1992;41(3-4):145–150. [PubMed] [Google Scholar]
  29. Segovia L., Young J. P., Martínez-Romero E. Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol. 1993 Apr;43(2):374–377. doi: 10.1099/00207713-43-2-374. [DOI] [PubMed] [Google Scholar]
  30. Simon R. High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet. 1984;196(3):413–420. doi: 10.1007/BF00436188. [DOI] [PubMed] [Google Scholar]
  31. Sinha A., Manna S., Roy S. K., Chakrabarty S. L. Induction of L-asparaginase synthesis in Vibrio proteus. Indian J Med Res. 1991 Sep;93:289–292. [PubMed] [Google Scholar]
  32. Sobiś M., Mikucki J. Staphylococcal L-asparaginase: enzyme kinetics. Acta Microbiol Pol. 1991;40(3-4):143–152. [PubMed] [Google Scholar]
  33. Sun D. X., Setlow P. Cloning, nucleotide sequence, and expression of the Bacillus subtilis ans operon, which codes for L-asparaginase and L-aspartase. J Bacteriol. 1991 Jun;173(12):3831–3845. doi: 10.1128/jb.173.12.3831-3845.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Takagi T., Kisumi M. Isolation of a versatile Serratia marcescens mutant as a host and molecular cloning of the aspartase gene. J Bacteriol. 1985 Jan;161(1):1–6. doi: 10.1128/jb.161.1.1-6.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tokushige M. Aspartate ammonia-lyase. Methods Enzymol. 1985;113:618–627. doi: 10.1016/s0076-6879(85)13083-1. [DOI] [PubMed] [Google Scholar]
  36. Watson R. J., Rastogi V. K. Cloning and nucleotide sequencing of Rhizobium meliloti aminotransferase genes: an aspartate aminotransferase required for symbiotic nitrogen fixation is atypical. J Bacteriol. 1993 Apr;175(7):1919–1928. doi: 10.1128/jb.175.7.1919-1928.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Willis R. C., Woolfolk C. A. Asparagine utilization in Escherichia coli. J Bacteriol. 1974 Apr;118(1):231–241. doi: 10.1128/jb.118.1.231-241.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES